time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1444B)


      1 
      2 {{alias}}( x, x0, Ɣ )
      3     Evaluates the probability density function (PDF) for a Cauchy distribution
      4     with location parameter `x0` and scale parameter `Ɣ` at a value `x`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided `Ɣ <= 0`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     x: number
     13         Input value.
     14 
     15     x0: number
     16         Location parameter.
     17 
     18     Ɣ: number
     19         Scale parameter.
     20 
     21     Returns
     22     -------
     23     out: number
     24         Evaluated PDF.
     25 
     26     Examples
     27     --------
     28     > var y = {{alias}}( 2.0, 1.0, 1.0 )
     29     ~0.159
     30     > y = {{alias}}( 4.0, 3.0, 0.1 )
     31     ~0.0315
     32     > y = {{alias}}( 4.0, 3.0, 3.0 )
     33     ~0.095
     34     > y = {{alias}}( NaN, 1.0, 1.0 )
     35     NaN
     36     > y = {{alias}}( 2.0, NaN, 1.0 )
     37     NaN
     38     > y = {{alias}}( 2.0, 1.0, NaN )
     39     NaN
     40 
     41     // Negative scale parameter:
     42     > y = {{alias}}( 2.0, 1.0, -2.0 )
     43     NaN
     44 
     45 
     46 {{alias}}.factory( x0, Ɣ )
     47     Returns a function for evaluating the probability density function (PDF) of
     48     a Cauchy distribution with location parameter `x0` and scale parameter `Ɣ`.
     49 
     50     Parameters
     51     ----------
     52     x0: number
     53         Location parameter.
     54 
     55     Ɣ: number
     56         Scale parameter.
     57 
     58     Returns
     59     -------
     60     pdf: Function
     61         Probability density function (PDF).
     62 
     63     Examples
     64     --------
     65     > var myPDF = {{alias}}.factory( 10.0, 2.0 );
     66     > var y = myPDF( 10.0 )
     67     ~0.159
     68 
     69     See Also
     70     --------
     71