README.md (3693B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Probability Density Function 22 23 > [Cauchy][cauchy-distribution] distribution probability density function (PDF). 24 25 <section class="intro"> 26 27 The [probability density function][pdf] (PDF) for a [Cauchy][cauchy-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:cauchy_cauchy_pdf" align="center" raw="f(x;\gamma,x_0)=\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!" alt="Probability density function (PDF) for a Cauchy distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="f(x;\gamma,x_0)=\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!" data-equation="eq:cauchy_cauchy_pdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/stats/base/dists/cauchy/pdf/docs/img/equation_cauchy_cauchy_pdf.svg" alt="Probability density function (PDF) for a Cauchy distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `x0` is the location parameter and `gamma > 0` is the scale parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var pdf = require( '@stdlib/stats/base/dists/cauchy/pdf' ); 50 ``` 51 52 #### pdf( x, x0, gamma ) 53 54 Evaluates the [probability density function][pdf] (PDF) for a [Cauchy][cauchy-distribution] distribution with parameters `x0` (location parameter) and `gamma > 0` (scale parameter). 55 56 ```javascript 57 var y = pdf( 2.0, 1.0, 1.0 ); 58 // returns ~0.159 59 60 y = pdf( 4.0, 3.0, 0.1 ); 61 // returns ~0.0315 62 63 y = pdf( 4.0, 3.0, 3.0 ); 64 // returns ~0.095 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = pdf( NaN, 1.0, 1.0 ); 71 // returns NaN 72 73 y = pdf( 2.0, NaN, 1.0 ); 74 // returns NaN 75 76 y = pdf( 2.0, 1.0, NaN ); 77 // returns NaN 78 ``` 79 80 If provided `gamma <= 0`, the function returns `NaN`. 81 82 ```javascript 83 var y = pdf( 2.0, 0.0, -1.0 ); 84 // returns NaN 85 86 y = pdf( 2.0, 0.0, 0.0 ); 87 // returns NaN 88 ``` 89 90 #### pdf.factory( x0, gamma ) 91 92 Returns a `function` for evaluating the [PDF][pdf] of a [Cauchy][cauchy-distribution] distribution with location parameter `x0` and scale parameter `gamma`. 93 94 ```javascript 95 var mypdf = pdf.factory( 10.0, 2.0 ); 96 97 var y = mypdf( 10.0 ); 98 // returns ~0.159 99 100 y = mypdf( 5.0 ); 101 // returns ~0.022 102 ``` 103 104 </section> 105 106 <!-- /.usage --> 107 108 <section class="examples"> 109 110 ## Examples 111 112 <!-- eslint no-undef: "error" --> 113 114 ```javascript 115 var randu = require( '@stdlib/random/base/randu' ); 116 var EPS = require( '@stdlib/constants/float64/eps' ); 117 var pdf = require( '@stdlib/stats/base/dists/cauchy/pdf' ); 118 119 var gamma; 120 var x0; 121 var x; 122 var y; 123 var i; 124 125 for ( i = 0; i < 10; i++ ) { 126 x = randu() * 10.0; 127 x0 = ( randu()*10.0 ) - 5.0; 128 gamma = ( randu()*20.0 ) + EPS; 129 y = pdf( x, gamma, x0 ); 130 console.log( 'x: %d, x0: %d, γ: %d, f(x;x0,γ): %d', x.toFixed(4), x0.toFixed(4), gamma.toFixed(4), y.toFixed(4) ); 131 } 132 ``` 133 134 </section> 135 136 <!-- /.examples --> 137 138 <section class="links"> 139 140 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function 141 142 [cauchy-distribution]: https://en.wikipedia.org/wiki/Cauchy_distribution 143 144 </section> 145 146 <!-- /.links -->