quantile.js (3284B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); 24 var erfcinv = require( '@stdlib/math/base/special/erfcinv' ); 25 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 26 var round = require( '@stdlib/math/base/special/round' ); 27 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 28 var cdf = require( './../../../../../base/dists/binomial/cdf' ); 29 var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' ); 30 var PINF = require( '@stdlib/constants/float64/pinf' ); 31 var searchLeft = require( './search_left.js' ); 32 var searchRight = require( './search_right.js' ); 33 34 35 // MAIN // 36 37 /** 38 * Evaluates the quantile function for a binomial distribution with number of trials `n` and success probability `p` at a probability `r`. 39 * 40 * @param {Probability} r - input value 41 * @param {NonNegativeInteger} n - number of trials 42 * @param {Probability} p - success probability 43 * @returns {NonNegativeInteger} evaluated quantile function 44 * 45 * @example 46 * var y = quantile( 0.4, 20, 0.2 ); 47 * // returns 3 48 * 49 * @example 50 * var y = quantile( 0.8, 20, 0.2 ); 51 * // returns 5 52 * 53 * @example 54 * var y = quantile( 0.5, 10, 0.4 ); 55 * // returns 4 56 * 57 * @example 58 * var y = quantile( 0.0, 10, 0.4 ); 59 * // returns 0 60 * 61 * @example 62 * var y = quantile( 1.0, 10, 0.4 ); 63 * // returns 10 64 * 65 * @example 66 * var y = quantile( NaN, 20, 0.5 ); 67 * // returns NaN 68 * 69 * @example 70 * var y = quantile( 0.2, NaN, 0.5 ); 71 * // returns NaN 72 * 73 * @example 74 * var y = quantile( 0.2, 20, NaN ); 75 * // returns NaN 76 * 77 * @example 78 * var y = quantile( 0.5, 1.5, 0.5 ); 79 * // returns NaN 80 * 81 * @example 82 * var y = quantile( 0.5, -2.0, 0.5 ); 83 * // returns NaN 84 * 85 * @example 86 * var y = quantile( 0.5, 20, -1.0 ); 87 * // returns NaN 88 * 89 * @example 90 * var y = quantile( 0.5, 20, 1.5 ); 91 * // returns NaN 92 */ 93 function quantile( r, n, p ) { 94 var sigmaInv; 95 var guess; 96 var sigma; 97 var corr; 98 var mu; 99 var x2; 100 var x; 101 102 if ( 103 isnan( r ) || 104 isnan( n ) || 105 isnan( p ) || 106 r < 0.0 || 107 r > 1.0 || 108 p < 0.0 || 109 p > 1.0 || 110 !isNonNegativeInteger( n ) || 111 n === PINF 112 ) { 113 return NaN; 114 } 115 if ( r === 1.0 || p === 1.0 ) { 116 return n; 117 } 118 if ( r === 0.0 || p === 0.0 || n === 0 ) { 119 return 0.0; 120 } 121 // Cornish-Fisher expansion: 122 mu = n * p; 123 sigma = sqrt( n * p * ( 1.0-p ) ); 124 sigmaInv = 1.0 / sigma; 125 if ( r < 0.5 ) { 126 x = -erfcinv( 2.0 * r ) * SQRT2; 127 } else { 128 x = erfcinv( 2.0 * ( 1.0-r ) ) * SQRT2; 129 } 130 x2 = x * x; 131 132 // Skewness correction: 133 corr = x + ( sigmaInv * ( x2-1.0 ) / 6.0 ); 134 guess = round( mu + (sigma * corr) ); 135 if ( cdf( guess, n, p ) >= r ) { 136 return searchLeft( guess, r, n, p ); 137 } 138 return searchRight( guess, r, n, p ); 139 } 140 141 142 // EXPORTS // 143 144 module.exports = quantile;