README.md (4093B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Quantile Function 22 23 > [Binomial][binomial-distribution] distribution [quantile function][quantile-function]. 24 25 <section class="intro"> 26 27 The [quantile function][quantile-function] for a [binomial][binomial-distribution] random variable returns, for any `r` satisfying `0 <= r <= 1`, the value `x` for which the relation 28 29 <!-- <equation class="equation" label="eq:binomial_quantile_function" align="center" raw="F(x-1;n,p) < r \le F(x;n,p)" alt="Quantile value for a binomial distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="F(x-1;n,p) < r \le F(x;n,p)" data-equation="eq:binomial_quantile_function"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/binomial/quantile/docs/img/equation_binomial_quantile_function.svg" alt="Quantile value for a binomial distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 holds, where `F` is the cumulative distribution function (CDF) of a binomial random variable, `n` is the number of trials, and `0 <= p <= 1` is the success probability. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var quantile = require( '@stdlib/stats/base/dists/binomial/quantile' ); 50 ``` 51 52 #### quantile( r, n, p ) 53 54 Evaluates the [quantile function][quantile-function] for a [binomial][binomial-distribution] distribution with number of trials `n` and success probability `p` at value `r`. 55 56 ```javascript 57 var y = quantile( 0.4, 20, 0.2 ); 58 // returns 3 59 60 y = quantile( 0.8, 20, 0.2 ); 61 // returns 5 62 63 y = quantile( 0.5, 10, 0.4 ); 64 // returns 4 65 66 y = quantile( 0.0, 10, 0.4 ); 67 // returns 0 68 69 y = quantile( 1.0, 10, 0.4 ); 70 // returns 10 71 ``` 72 73 If provided `NaN` as any argument, the function returns `NaN`. 74 75 ```javascript 76 var y = quantile( NaN, 20, 0.5 ); 77 // returns NaN 78 79 y = quantile( 0.2, NaN, 0.5 ); 80 // returns NaN 81 82 y = quantile( 0.2, 20, NaN ); 83 // returns NaN 84 ``` 85 86 If provided a number of trials `n` which is not a nonnegative integer, the function returns `NaN`. 87 88 ```javascript 89 var y = quantile( 0.5, 1.5, 0.5 ); 90 // returns NaN 91 92 y = quantile( 0.5, -2.0, 0.5 ); 93 // returns NaN 94 ``` 95 96 If provided a success probability `p` outside of `[0,1]`, the function returns `NaN`. 97 98 ```javascript 99 var y = quantile( 0.5, 20, -1.0 ); 100 // returns NaN 101 102 y = quantile( 0.5, 20, 1.5 ); 103 // returns NaN 104 ``` 105 106 #### quantile.factory( n, p ) 107 108 Returns a function for evaluating the [quantile function][quantile-function] of a [binomial][binomial-distribution] distribution with number of trials `n` and success probability `p`. 109 110 ```javascript 111 var myquantile = quantile.factory( 10, 0.5 ); 112 113 var y = myquantile( 0.1 ); 114 // returns 3 115 116 y = myquantile( 0.9 ); 117 // returns 7 118 ``` 119 120 </section> 121 122 <!-- /.usage --> 123 124 <section class="examples"> 125 126 ## Examples 127 128 <!-- eslint no-undef: "error" --> 129 130 ```javascript 131 var randu = require( '@stdlib/random/base/randu' ); 132 var round = require( '@stdlib/math/base/special/round' ); 133 var quantile = require( '@stdlib/stats/base/dists/binomial/quantile' ); 134 135 var r; 136 var i; 137 var n; 138 var p; 139 var y; 140 141 for ( i = 0; i < 10; i++ ) { 142 r = randu(); 143 n = round( randu() * 100.0 ); 144 p = randu(); 145 y = quantile( r, n, p ); 146 console.log( 'r: %d, n: %d, p: %d, Q(r;n,p): %d', r.toFixed( 4 ), n, p.toFixed( 4 ) ); 147 } 148 ``` 149 150 </section> 151 152 <!-- /.examples --> 153 154 <section class="links"> 155 156 [binomial-distribution]: https://en.wikipedia.org/wiki/Binomial_distribution 157 158 [quantile-function]: https://en.wikipedia.org/wiki/Quantile_function 159 160 </section> 161 162 <!-- /.links -->