README.md (4350B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Quantile Function 22 23 > [Beta prime][betaprime-distribution] distribution [quantile function][quantile-function]. 24 25 <section class="intro"> 26 27 The [quantile function][quantile-function] for a [beta prime][betaprime-distribution] random variable with first shape parameter `α > 0` and second shape parameter `β > 0` is 28 29 <!-- <equation class="equation" label="eq:betaprime_quantile_function" align="center" raw="Q(p;\alpha,\beta)\,= \frac{G^{-1}(p)}{1-G^{-1}(p)}" alt="Quantile function for a beta prime distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="Q(p;\alpha,\beta)\,= \frac{G^{-1}(p)}{1-G^{-1}(p)}" data-equation="eq:betaprime_quantile_function"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/betaprime/quantile/docs/img/equation_betaprime_quantile_function.svg" alt="Quantile function for a beta prime distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 for `0 <= p <= 1`, where `G^-1` denotes the quantile function of a [beta][beta-distribution] random variable with parameters `α` and `β`. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var quantile = require( '@stdlib/stats/base/dists/betaprime/quantile' ); 50 ``` 51 52 #### quantile( p, alpha, beta ) 53 54 Evaluates the [quantile function][quantile-function] for a [beta prime][betaprime-distribution] distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter). 55 56 ```javascript 57 var y = quantile( 0.8, 2.0, 1.0 ); 58 // returns ~8.472 59 60 y = quantile( 0.5, 4.0, 2.0 ); 61 // returns ~2.187 62 ``` 63 64 If provided a probability `p` outside the interval `[0,1]`, the function returns `NaN`. 65 66 ```javascript 67 var y = quantile( 1.9, 1.0, 1.0 ); 68 // returns NaN 69 70 y = quantile( -0.1, 1.0, 1.0 ); 71 // returns NaN 72 ``` 73 74 If provided `NaN` as any argument, the function returns `NaN`. 75 76 ```javascript 77 var y = quantile( NaN, 1.0, 1.0 ); 78 // returns NaN 79 80 y = quantile( 0.5, NaN, 1.0 ); 81 // returns NaN 82 83 y = quantile( 0.5, 1.0, NaN ); 84 // returns NaN 85 ``` 86 87 If provided `alpha <= 0`, the function returns `NaN`. 88 89 ```javascript 90 var y = quantile( 0.4, -1.0, 1.0 ); 91 // returns NaN 92 93 y = quantile( 0.4, 0.0, 1.0 ); 94 // returns NaN 95 ``` 96 97 If provided `beta <= 0`, the function returns `NaN`. 98 99 ```javascript 100 var y = quantile( 0.4, 1.0, -1.0 ); 101 // returns NaN 102 103 y = quantile( 0.4, 1.0, 0.0 ); 104 // returns NaN 105 ``` 106 107 #### quantile.factory( alpha, beta ) 108 109 Returns a function for evaluating the [quantile function][quantile-function] of a [beta prime][betaprime-distribution] distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter). 110 111 ```javascript 112 var myQuantile = quantile.factory( 2.0, 2.0 ); 113 114 var y = myQuantile( 0.8 ); 115 // returns ~2.483 116 117 y = myQuantile( 0.4 ); 118 // returns ~0.763 119 ``` 120 121 </section> 122 123 <!-- /.usage --> 124 125 <section class="examples"> 126 127 ## Examples 128 129 <!-- eslint no-undef: "error" --> 130 131 ```javascript 132 var randu = require( '@stdlib/random/base/randu' ); 133 var EPS = require( '@stdlib/constants/float64/eps' ); 134 var quantile = require( '@stdlib/stats/base/dists/betaprime/quantile' ); 135 136 var alpha; 137 var beta; 138 var p; 139 var y; 140 var i; 141 142 for ( i = 0; i < 10; i++ ) { 143 p = randu(); 144 alpha = ( randu()*5.0 ) + EPS; 145 beta = ( randu()*5.0 ) + EPS; 146 y = quantile( p, alpha, beta ); 147 console.log( 'p: %d, α: %d, β: %d, Q(p;α,β): %d', p.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) ); 148 } 149 ``` 150 151 </section> 152 153 <!-- /.examples --> 154 155 <section class="links"> 156 157 [beta-distribution]: https://en.wikipedia.org/wiki/Beta_distribution 158 159 [betaprime-distribution]: https://en.wikipedia.org/wiki/Beta_prime_distribution 160 161 [quantile-function]: https://en.wikipedia.org/wiki/Quantile_function 162 163 </section> 164 165 <!-- /.links -->