time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (2340B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var betaln = require( '@stdlib/math/base/special/betaln' );
     25 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     26 var log1p = require( '@stdlib/math/base/special/log1p' );
     27 var ln = require( '@stdlib/math/base/special/ln' );
     28 var NINF = require( '@stdlib/constants/float64/ninf' );
     29 
     30 
     31 // MAIN //
     32 
     33 /**
     34 * Returns a function for evaluating the natural logarithm of the probability density function (logPDF) for a beta prime distribution with first shape parameter `alpha` and second shape parameter `beta`.
     35 *
     36 * @param {PositiveNumber} alpha - first shape parameter
     37 * @param {PositiveNumber} beta - second shape parameter
     38 * @returns {Function} logPDF
     39 *
     40 * @example
     41 * var logpdf = factory( 0.5, 0.5 );
     42 *
     43 * var y = logpdf( 0.8 );
     44 * // returns ~-1.62
     45 *
     46 * y = logpdf( 0.3 );
     47 * // returns ~-0.805
     48 */
     49 function factory( alpha, beta ) {
     50 	var betalnAB;
     51 	if (
     52 		isnan( alpha ) ||
     53 		isnan( beta ) ||
     54 		alpha <= 0.0 ||
     55 		beta <= 0.0
     56 	) {
     57 		return constantFunction( NaN );
     58 	}
     59 	betalnAB = betaln( alpha, beta );
     60 	return logpdf;
     61 
     62 	/**
     63 	* Evaluates the natural logarithm of the probability density function (PDF) for a beta prime distribution.
     64 	*
     65 	* @private
     66 	* @param {number} x - input value
     67 	* @returns {number} evaluated natural logarithm of the PDF
     68 	*
     69 	* @example
     70 	* var y = logpdf( 0.3 );
     71 	* // returns <number>
     72 	*/
     73 	function logpdf( x ) {
     74 		var out;
     75 		if ( isnan( x ) ) {
     76 			return NaN;
     77 		}
     78 		if ( x <= 0.0 ) {
     79 			// Support of the BetaPrime distribution: (0,∞)
     80 			return NINF;
     81 		}
     82 		out = ( alpha-1.0 ) * ln( x );
     83 		out -= ( alpha+beta ) * log1p( x );
     84 		out -= betalnAB;
     85 		return out;
     86 	}
     87 }
     88 
     89 
     90 // EXPORTS //
     91 
     92 module.exports = factory;