time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4752B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Logarithm of Probability Density Function
     22 
     23 > [Beta prime][betaprime-distribution] distribution logarithm of probability density function (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [beta prime][betaprime-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:betaprime_pdf" align="center" raw="f(x;\alpha,\beta)= \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)}{x^{\alpha-1}(1+x)^{-\alpha-\beta}} & \text{ for } x > 0 \\ 0 & \text{ otherwise } \end{cases}" alt="Probability density function (PDF) for a beta prime distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\alpha,\beta)= \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)}{x^{\alpha-1}(1+x)^{-\alpha-\beta}} &amp; \text{ for } x &gt; 0 \\ 0 &amp; \text{ otherwise } \end{cases}" data-equation="eq:betaprime_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/betaprime/logpdf/docs/img/equation_betaprime_pdf.svg" alt="Probability density function (PDF) for a beta prime distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `α > 0` is the first shape parameter and `β > 0` is the second shape parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var logpdf = require( '@stdlib/stats/base/dists/betaprime/logpdf' );
     50 ```
     51 
     52 #### logpdf( x, alpha, beta )
     53 
     54 Evaluates the natural logarithm of the [probability density function][pdf] (PDF) for a [beta prime][betaprime-distribution]  distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter).
     55 
     56 ```javascript
     57 var y = logpdf( 0.5, 0.5, 1.0 );
     58 // returns ~-0.955
     59 
     60 y = logpdf( 0.1, 1.0, 1.0 );
     61 // returns ~-0.191
     62 
     63 y = logpdf( 0.8, 4.0, 2.0 );
     64 // returns ~-1.2
     65 ```
     66 
     67 If provided an input value `x` outside smaller or equal to zero, the function returns `-Infinity`.
     68 
     69 ```javascript
     70 var y = logpdf( -0.1, 1.0, 1.0 );
     71 // returns -Infinity
     72 ```
     73 
     74 If provided `NaN` as any argument, the function returns `NaN`.
     75 
     76 ```javascript
     77 var y = logpdf( NaN, 1.0, 1.0 );
     78 // returns NaN
     79 
     80 y = logpdf( 0.0, NaN, 1.0 );
     81 // returns NaN
     82 
     83 y = logpdf( 0.0, 1.0, NaN );
     84 // returns NaN
     85 ```
     86 
     87 If provided `alpha <= 0`, the function returns `NaN`.
     88 
     89 ```javascript
     90 var y = logpdf( 0.5, 0.0, 1.0 );
     91 // returns NaN
     92 
     93 y = logpdf( 0.5, -1.0, 1.0 );
     94 // returns NaN
     95 ```
     96 
     97 If provided `beta <= 0`, the function returns `NaN`.
     98 
     99 ```javascript
    100 var y = logpdf( 0.5, 1.0, 0.0 );
    101 // returns NaN
    102 
    103 y = logpdf( 0.5, 1.0, -1.0 );
    104 // returns NaN
    105 ```
    106 
    107 #### logpdf.factory( alpha, beta )
    108 
    109 Returns a `function` for evaluating the natural logarithm of the [PDF][pdf] for a [beta prime][betaprime-distribution] distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter).
    110 
    111 ```javascript
    112 var mylogPDF = logpdf.factory( 0.5, 0.5 );
    113 
    114 var y = mylogPDF( 0.8 );
    115 // returns ~-1.62
    116 
    117 y = mylogPDF( 0.3 );
    118 // returns ~-0.805
    119 ```
    120 
    121 </section>
    122 
    123 <!-- /.usage -->
    124 
    125 <section class="notes">
    126 
    127 ## Notes
    128 
    129 -   In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow.
    130 
    131 </section>
    132 
    133 <!-- /.notes -->
    134 
    135 <section class="examples">
    136 
    137 ## Examples
    138 
    139 <!-- eslint no-undef: "error" -->
    140 
    141 ```javascript
    142 var randu = require( '@stdlib/random/base/randu' );
    143 var EPS = require( '@stdlib/constants/float64/eps' );
    144 var logpdf = require( '@stdlib/stats/base/dists/betaprime/logpdf' );
    145 
    146 var alpha;
    147 var beta;
    148 var x;
    149 var y;
    150 var i;
    151 
    152 for ( i = 0; i < 10; i++ ) {
    153     x = randu();
    154     alpha = ( randu()*5.0 ) + EPS;
    155     beta = ( randu()*5.0 ) + EPS;
    156     y = logpdf( x, alpha, beta );
    157     console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
    158 }
    159 ```
    160 
    161 </section>
    162 
    163 <!-- /.examples -->
    164 
    165 <section class="links">
    166 
    167 [betaprime-distribution]: https://en.wikipedia.org/wiki/Beta_prime_distribution
    168 
    169 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    170 
    171 </section>
    172 
    173 <!-- /.links -->