time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4238B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Probability Density Function
     22 
     23 > [Beta][beta-distribution] distribution probability density function (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [beta][beta-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:beta_pdf" align="center" raw="f(x;\alpha,\beta)= \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)}{x^{\alpha-1}(1-x)^{\beta-1}} & \text{ for } x \in (0,1) \\ 0 & \text{ otherwise } \end{cases}" alt="Probability density function (PDF) for a beta distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\alpha,\beta)= \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)}{x^{\alpha-1}(1-x)^{\beta-1}} &amp; \text{ for } x \in (0,1) \\ 0 &amp; \text{ otherwise } \end{cases}" data-equation="eq:beta_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/beta/pdf/docs/img/equation_beta_pdf.svg" alt="Probability density function (PDF) for a beta distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `alpha > 0` is the first shape parameter and `beta > 0` is the second shape parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var pdf = require( '@stdlib/stats/base/dists/beta/pdf' );
     50 ```
     51 
     52 #### pdf( x, alpha, beta )
     53 
     54 Evaluates the [probability density function][pdf] (PDF) for a [beta][beta-distribution]  distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter).
     55 
     56 ```javascript
     57 var y = pdf( 0.5, 0.5, 1.0 );
     58 // returns ~0.707
     59 
     60 y = pdf( 0.1, 1.0, 1.0 );
     61 // returns 1.0
     62 
     63 y = pdf( 0.8, 4.0, 2.0 );
     64 // returns ~2.048
     65 ```
     66 
     67 If provided a `x` outside the support `[0,1]`, the function returns `0`.
     68 
     69 ```javascript
     70 var y = pdf( -0.1, 1.0, 1.0 );
     71 // returns 0.0
     72 
     73 y = pdf( 1.1, 1.0, 1.0 );
     74 // returns 0.0
     75 ```
     76 
     77 If provided `NaN` as any argument, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = pdf( NaN, 1.0, 1.0 );
     81 // returns NaN
     82 
     83 y = pdf( 0.0, NaN, 1.0 );
     84 // returns NaN
     85 
     86 y = pdf( 0.0, 1.0, NaN );
     87 // returns NaN
     88 ```
     89 
     90 If provided `alpha <= 0`, the function returns `NaN`.
     91 
     92 ```javascript
     93 var y = pdf( 0.5, 0.0, 1.0 );
     94 // returns NaN
     95 
     96 y = pdf( 0.5, -1.0, 1.0 );
     97 // returns NaN
     98 ```
     99 
    100 If provided `beta <= 0`, the function returns `NaN`.
    101 
    102 ```javascript
    103 var y = pdf( 0.5, 1.0, 0.0 );
    104 // returns NaN
    105 
    106 y = pdf( 0.5, 1.0, -1.0 );
    107 // returns NaN
    108 ```
    109 
    110 #### pdf.factory( alpha, beta )
    111 
    112 Returns a `function` for evaluating the [PDF][pdf] for a [beta][beta-distribution] distribution with parameters `alpha` (first shape parameter) and `beta` (second shape parameter).
    113 
    114 ```javascript
    115 var mypdf = pdf.factory( 0.5, 0.5 );
    116 
    117 var y = mypdf( 0.8 );
    118 // returns ~0.796
    119 
    120 y = mypdf( 0.3 );
    121 // returns ~0.695
    122 ```
    123 
    124 </section>
    125 
    126 <!-- /.usage -->
    127 
    128 <section class="examples">
    129 
    130 ## Examples
    131 
    132 <!-- eslint no-undef: "error" -->
    133 
    134 ```javascript
    135 var randu = require( '@stdlib/random/base/randu' );
    136 var EPS = require( '@stdlib/constants/float64/eps' );
    137 var pdf = require( '@stdlib/stats/base/dists/beta/pdf' );
    138 
    139 var alpha;
    140 var beta;
    141 var x;
    142 var y;
    143 var i;
    144 
    145 for ( i = 0; i < 10; i++ ) {
    146     x = randu();
    147     alpha = ( randu()*5.0 ) + EPS;
    148     beta = ( randu()*5.0 ) + EPS;
    149     y = pdf( x, alpha, beta );
    150     console.log( 'x: %d, α: %d, β: %d, f(x;α,β): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
    151 }
    152 ```
    153 
    154 </section>
    155 
    156 <!-- /.examples -->
    157 
    158 <section class="links">
    159 
    160 [beta-distribution]: https://en.wikipedia.org/wiki/Beta_distribution
    161 
    162 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    163 
    164 </section>
    165 
    166 <!-- /.links -->