logpdf.js (2791B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var betaln = require( '@stdlib/math/base/special/betaln' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var log1p = require( '@stdlib/math/base/special/log1p' ); 26 var ln = require( '@stdlib/math/base/special/ln' ); 27 var PINF = require( '@stdlib/constants/float64/pinf' ); 28 var NINF = require( '@stdlib/constants/float64/ninf' ); 29 30 31 // MAIN // 32 33 /** 34 * Evaluates the natural logarithm of the probability density function (logPDF) for a beta distribution with first shape parameter `alpha` and second shape parameter `beta` at a value `x`. 35 * 36 * @param {number} x - input value 37 * @param {PositiveNumber} alpha - first shape parameter 38 * @param {PositiveNumber} beta - second shape parameter 39 * @returns {number} evaluated logPDF 40 * 41 * @example 42 * var y = logpdf( 0.5, 1.0, 1.0 ); 43 * // returns 0.0 44 * 45 * @example 46 * var y = logpdf( 0.5, 2.0, 4.0 ); 47 * // returns ~0.223 48 * 49 * @example 50 * var y = logpdf( 0.2, 2.0, 2.0 ); 51 * // returns ~-0.041 52 * 53 * @example 54 * var y = logpdf( 0.8, 4.0, 4.0 ); 55 * // returns ~-0.556 56 * 57 * @example 58 * var y = logpdf( -0.5, 4.0, 2.0 ); 59 * // returns -Infinity 60 * 61 * @example 62 * var y = logpdf( 1.5, 4.0, 2.0 ); 63 * // returns -Infinity 64 * 65 * @example 66 * var y = logpdf( 0.5, -1.0, 0.5 ); 67 * // returns NaN 68 * 69 * @example 70 * var y = logpdf( 0.5, 0.5, -1.0 ); 71 * // returns NaN 72 * 73 * @example 74 * var y = logpdf( NaN, 1.0, 1.0 ); 75 * // returns NaN 76 * 77 * @example 78 * var y = logpdf( 0.5, NaN, 1.0 ); 79 * // returns NaN 80 * 81 * @example 82 * var y = logpdf( 0.5, 1.0, NaN ); 83 * // returns NaN 84 */ 85 function logpdf( x, alpha, beta ) { 86 var out; 87 if ( 88 isnan( x ) || 89 isnan( alpha ) || 90 isnan( beta ) || 91 alpha <= 0.0 || 92 beta <= 0.0 93 ) { 94 return NaN; 95 } 96 if ( x < 0.0 || x > 1.0 ) { 97 // Support of the Beta distribution: [0,1] 98 return NINF; 99 } 100 if ( x === 0.0 ) { 101 if ( alpha < 1.0 ) { 102 return PINF; 103 } 104 if ( alpha > 1.0 ) { 105 return NINF; 106 } 107 return ln( beta ); 108 } 109 if ( x === 1.0 ) { 110 if ( beta < 1.0 ) { 111 return PINF; 112 } 113 if ( beta > 1.0 ) { 114 return NINF; 115 } 116 return ln( alpha ); 117 } 118 out = ( alpha-1.0 ) * ln( x ); 119 out += ( beta-1.0 ) * log1p( -x ); 120 out -= betaln( alpha, beta ); 121 return out; 122 } 123 124 125 // EXPORTS // 126 127 module.exports = logpdf;