factory.js (2657B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var constantFunction = require( '@stdlib/utils/constant-function' ); 24 var betaln = require( '@stdlib/math/base/special/betaln' ); 25 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 26 var log1p = require( '@stdlib/math/base/special/log1p' ); 27 var ln = require( '@stdlib/math/base/special/ln' ); 28 var NINF = require( '@stdlib/constants/float64/ninf' ); 29 var PINF = require( '@stdlib/constants/float64/pinf' ); 30 31 32 // MAIN // 33 34 /** 35 * Returns a function for evaluating the natural logarithm of the probability density function (logPDF) for a beta distribution with first shape parameter `alpha` and second shape parameter `beta`. 36 * 37 * @param {PositiveNumber} alpha - first shape parameter 38 * @param {PositiveNumber} beta - second shape parameter 39 * @returns {Function} logPDF 40 * 41 * @example 42 * var logpdf = factory( 0.5, 0.5 ); 43 * 44 * var y = logpdf( 0.8 ); 45 * // returns ~-0.228 46 * 47 * y = logpdf( 0.3 ); 48 * // returns ~-0.364 49 */ 50 function factory( alpha, beta ) { 51 var betalnAB; 52 if ( 53 isnan( alpha ) || 54 isnan( beta ) || 55 alpha <= 0.0 || 56 beta <= 0.0 57 ) { 58 return constantFunction( NaN ); 59 } 60 betalnAB = betaln( alpha, beta ); 61 return logpdf; 62 63 /** 64 * Evaluates the natural logarithm of the probability density function (PDF) for a beta distribution. 65 * 66 * @private 67 * @param {number} x - input value 68 * @returns {number} evaluated natural logarithm of the PDF 69 * 70 * @example 71 * var y = logpdf( 0.3 ); 72 * // returns <number> 73 */ 74 function logpdf( x ) { 75 var out; 76 if ( isnan( x ) ) { 77 return NaN; 78 } 79 if ( x < 0.0 || x > 1.0 ) { 80 // Support of the Beta distribution: [0,1] 81 return NINF; 82 } 83 if ( x === 0.0 ) { 84 if ( alpha < 1.0 ) { 85 return PINF; 86 } 87 if ( alpha > 1.0 ) { 88 return NINF; 89 } 90 return ln( beta ); 91 } 92 if ( x === 1.0 ) { 93 if ( beta < 1.0 ) { 94 return PINF; 95 } 96 if ( beta > 1.0 ) { 97 return NINF; 98 } 99 return ln( alpha ); 100 } 101 out = -betalnAB; 102 out += ( ( alpha-1.0 )*ln(x) ) + ( ( beta-1.0 )*log1p(-x) ); 103 return out; 104 } 105 } 106 107 108 // EXPORTS // 109 110 module.exports = factory;