time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1859B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     25 var sqrt = require( '@stdlib/math/base/special/sqrt' );
     26 var PI = require( '@stdlib/constants/float64/pi' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the probability density function (PDF) for an arcsine distribution with minimum support `a` and maximum support `b`.
     33 *
     34 * @param {number} a - minimum support
     35 * @param {number} b - maximum support
     36 * @returns {Function} PDF
     37 *
     38 * @example
     39 * var pdf = factory( 0.0, 10.0 );
     40 * var y = pdf( 2.0 );
     41 * // returns ~0.08
     42 *
     43 * y = pdf( 12.0 );
     44 * // returns 0.0
     45 */
     46 function factory( a, b ) {
     47 	if (
     48 		isnan( a ) ||
     49 		isnan( b ) ||
     50 		a >= b
     51 	) {
     52 		return constantFunction( NaN );
     53 	}
     54 	return pdf;
     55 
     56 	/**
     57 	* Evaluates the probability density function (PDF) for an arcsine distribution.
     58 	*
     59 	* @private
     60 	* @param {number} x - input value
     61 	* @returns {number} evaluated PDF
     62 	*
     63 	* @example
     64 	* var y = pdf( 2.0 );
     65 	* // returns <number>
     66 	*/
     67 	function pdf( x ) {
     68 		if ( isnan( x ) ) {
     69 			return NaN;
     70 		}
     71 		if ( x < a || x > b ) {
     72 			return 0.0;
     73 		}
     74 		return 1.0 / ( PI * sqrt( ( x-a ) * ( b-x ) ) );
     75 	}
     76 }
     77 
     78 
     79 // EXPORTS //
     80 
     81 module.exports = factory;