README.md (4121B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Probability Density Function 22 23 > [Arcsine][arcsine-distribution] distribution logarithm of [probability density function][pdf] (PDF). 24 25 <section class="intro"> 26 27 The [probability density function][pdf] (PDF) for a [arcsine][arcsine-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:arcsine_pdf" align="center" raw="f(x;a,b)=\begin{cases} {\frac{1}{\pi {\sqrt{(x-a)(b-x)}}}} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}" alt="Probability density function (PDF) for an distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="f(x;a,b)=\begin{cases} {\frac{1}{\pi {\sqrt{(x-a)(b-x)}}}} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}" data-equation="eq:arcsine_pdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/arcsine/logpdf/docs/img/equation_arcsine_pdf.svg" alt="Probability density function (PDF) for an distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `a` is the minimum support and `b` is the maximum support of the distribution. The parameters must satisfy `a < b`. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logpdf = require( '@stdlib/stats/base/dists/arcsine/logpdf' ); 50 ``` 51 52 #### logpdf( x, a, b ) 53 54 Evaluates the logarithm of the [probability density function][pdf] (PDF) for an [arcsine][arcsine-distribution] distribution with parameters `a` (minimum support) and `b` (maximum support). 55 56 ```javascript 57 var y = logpdf( 2.0, 0.0, 4.0 ); 58 // returns ~-1.838 59 60 y = logpdf( 5.0, 0.0, 4.0 ); 61 // returns -Infinity 62 63 y = logpdf( 0.25, 0.0, 1.0 ); 64 // returns ~-0.308 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logpdf( NaN, 0.0, 1.0 ); 71 // returns NaN 72 73 y = logpdf( 0.0, NaN, 1.0 ); 74 // returns NaN 75 76 y = logpdf( 0.0, 0.0, NaN ); 77 // returns NaN 78 ``` 79 80 If provided `a >= b`, the function returns `NaN`. 81 82 ```javascript 83 var y = logpdf( 2.5, 3.0, 2.0 ); 84 // returns NaN 85 86 y = logpdf( 2.5, 3.0, 3.0 ); 87 // returns NaN 88 ``` 89 90 #### logpdf.factory( a, b ) 91 92 Returns a `function` for evaluating the logarithm of the [PDF][pdf] for an [arcsine][arcsine-distribution] distribution with parameters `a` (minimum support) and `b` (maximum support). 93 94 ```javascript 95 var mylogPDF = logpdf.factory( 6.0, 7.0 ); 96 var y = mylogPDF( 7.0 ); 97 // returns Infinity 98 99 y = mylogPDF( 5.0 ); 100 // returns -Infinity 101 ``` 102 103 </section> 104 105 <!-- /.usage --> 106 107 <section class="notes"> 108 109 ## Notes 110 111 - In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 112 113 </section> 114 115 <!-- /.notes --> 116 117 <section class="examples"> 118 119 ## Examples 120 121 <!-- eslint no-undef: "error" --> 122 123 ```javascript 124 var randu = require( '@stdlib/random/base/randu' ); 125 var logpdf = require( '@stdlib/stats/base/dists/arcsine/logpdf' ); 126 127 var a; 128 var b; 129 var x; 130 var y; 131 var i; 132 133 for ( i = 0; i < 25; i++ ) { 134 x = ( randu()*20.0 ) - 10.0; 135 a = ( randu()*20.0 ) - 20.0; 136 b = a + ( randu()*40.0 ); 137 y = logpdf( x, a, b ); 138 console.log( 'x: %d, a: %d, b: %d, ln(f(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) ); 139 } 140 ``` 141 142 </section> 143 144 <!-- /.examples --> 145 146 <section class="links"> 147 148 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function 149 150 [arcsine-distribution]: https://en.wikipedia.org/wiki/Uniform_distribution 151 152 </section> 153 154 <!-- /.links -->