time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (83840B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Base Statistics
     22 
     23 > Standard library base statistical functions.
     24 
     25 <section class="usage">
     26 
     27 ## Usage
     28 
     29 ```javascript
     30 var stats = require( '@stdlib/stats/base' );
     31 ```
     32 
     33 #### stats
     34 
     35 Standard library base statistical functions.
     36 
     37 ```javascript
     38 var ns = stats;
     39 // returns {...}
     40 ```
     41 
     42 The namespace contains the following sub-namespaces:
     43 
     44 <!-- <toc pattern="dists"> -->
     45 
     46 <div class="namespace-toc">
     47 
     48 -   <span class="signature">[`dists`][@stdlib/stats/base/dists]</span><span class="delimiter">: </span><span class="description">standard library probability distribution modules.</span>
     49 
     50 </div>
     51 
     52 <!-- </toc> -->
     53 
     54 The namespace contains the following statistical functions:
     55 
     56 <!-- <toc pattern="*"> -->
     57 
     58 <div class="namespace-toc">
     59 
     60 -   <span class="signature">[`cumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of a strided array.</span>
     61 -   <span class="signature">[`cumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of a strided array.</span>
     62 -   <span class="signature">[`cumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/cumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of a strided array.</span>
     63 -   <span class="signature">[`cuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/cuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of a strided array.</span>
     64 -   <span class="signature">[`dcumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of double-precision floating-point strided array elements.</span>
     65 -   <span class="signature">[`dcumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.</span>
     66 -   <span class="signature">[`dcumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of double-precision floating-point strided array elements.</span>
     67 -   <span class="signature">[`dcuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/dcuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.</span>
     68 -   <span class="signature">[`dmax( N, x, stride )`][@stdlib/stats/base/dmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array.</span>
     69 -   <span class="signature">[`dmaxabs( N, x, stride )`][@stdlib/stats/base/dmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a double-precision floating-point strided array.</span>
     70 -   <span class="signature">[`dmaxabssorted( N, x, stride )`][@stdlib/stats/base/dmaxabssorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a sorted double-precision floating-point strided array.</span>
     71 -   <span class="signature">[`dmaxsorted( N, x, stride )`][@stdlib/stats/base/dmaxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted double-precision floating-point strided array.</span>
     72 -   <span class="signature">[`dmean( N, x, stride )`][@stdlib/stats/base/dmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array.</span>
     73 -   <span class="signature">[`dmeankbn( N, x, stride )`][@stdlib/stats/base/dmeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
     74 -   <span class="signature">[`dmeankbn2( N, x, stride )`][@stdlib/stats/base/dmeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
     75 -   <span class="signature">[`dmeanli( N, x, stride )`][@stdlib/stats/base/dmeanli]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
     76 -   <span class="signature">[`dmeanlipw( N, x, stride )`][@stdlib/stats/base/dmeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
     77 -   <span class="signature">[`dmeanors( N, x, stride )`][@stdlib/stats/base/dmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.</span>
     78 -   <span class="signature">[`dmeanpn( N, x, stride )`][@stdlib/stats/base/dmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.</span>
     79 -   <span class="signature">[`dmeanpw( N, x, stride )`][@stdlib/stats/base/dmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.</span>
     80 -   <span class="signature">[`dmeanstdev( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdev]</span><span class="delimiter">: </span><span class="description">calculate the mean and standard deviation of a double-precision floating-point strided array.</span>
     81 -   <span class="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
     82 -   <span class="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
     83 -   <span class="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
     84 -   <span class="signature">[`dmeanwd( N, x, stride )`][@stdlib/stats/base/dmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
     85 -   <span class="signature">[`dmediansorted( N, x, stride )`][@stdlib/stats/base/dmediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
     86 -   <span class="signature">[`dmidrange( N, x, stride )`][@stdlib/stats/base/dmidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a double-precision floating-point strided array.</span>
     87 -   <span class="signature">[`dmin( N, x, stride )`][@stdlib/stats/base/dmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array.</span>
     88 -   <span class="signature">[`dminabs( N, x, stride )`][@stdlib/stats/base/dminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array.</span>
     89 -   <span class="signature">[`dminsorted( N, x, stride )`][@stdlib/stats/base/dminsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted double-precision floating-point strided array.</span>
     90 -   <span class="signature">[`dmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask.</span>
     91 -   <span class="signature">[`dmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask.</span>
     92 -   <span class="signature">[`dmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask.</span>
     93 -   <span class="signature">[`dnanmax( N, x, stride )`][@stdlib/stats/base/dnanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
     94 -   <span class="signature">[`dnanmaxabs( N, x, stride )`][@stdlib/stats/base/dnanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
     95 -   <span class="signature">[`dnanmean( N, x, stride )`][@stdlib/stats/base/dnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values.</span>
     96 -   <span class="signature">[`dnanmeanors( N, x, stride )`][@stdlib/stats/base/dnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
     97 -   <span class="signature">[`dnanmeanpn( N, x, stride )`][@stdlib/stats/base/dnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
     98 -   <span class="signature">[`dnanmeanpw( N, x, stride )`][@stdlib/stats/base/dnanmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using pairwise summation.</span>
     99 -   <span class="signature">[`dnanmeanwd( N, x, stride )`][@stdlib/stats/base/dnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values.</span>
    100 -   <span class="signature">[`dnanmin( N, x, stride )`][@stdlib/stats/base/dnanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
    101 -   <span class="signature">[`dnanminabs( N, x, stride )`][@stdlib/stats/base/dnanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a double-precision floating-point strided array, ignoring `NaN` values.</span>
    102 -   <span class="signature">[`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    103 -   <span class="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    104 -   <span class="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    105 -   <span class="signature">[`dnanrange( N, x, stride )`][@stdlib/stats/base/dnanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.</span>
    106 -   <span class="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
    107 -   <span class="signature">[`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    108 -   <span class="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    109 -   <span class="signature">[`dnanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    110 -   <span class="signature">[`dnanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
    111 -   <span class="signature">[`dnanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    112 -   <span class="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
    113 -   <span class="signature">[`dnanvariancech( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    114 -   <span class="signature">[`dnanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    115 -   <span class="signature">[`dnanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    116 -   <span class="signature">[`dnanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dnanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
    117 -   <span class="signature">[`dnanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dnanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    118 -   <span class="signature">[`drange( N, x, stride )`][@stdlib/stats/base/drange]</span><span class="delimiter">: </span><span class="description">calculate the range of a double-precision floating-point strided array.</span>
    119 -   <span class="signature">[`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
    120 -   <span class="signature">[`dsemch( N, correction, x, stride )`][@stdlib/stats/base/dsemch]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    121 -   <span class="signature">[`dsempn( N, correction, x, stride )`][@stdlib/stats/base/dsempn]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
    122 -   <span class="signature">[`dsemtk( N, correction, x, stride )`][@stdlib/stats/base/dsemtk]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
    123 -   <span class="signature">[`dsemwd( N, correction, x, stride )`][@stdlib/stats/base/dsemwd]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.</span>
    124 -   <span class="signature">[`dsemyc( N, correction, x, stride )`][@stdlib/stats/base/dsemyc]</span><span class="delimiter">: </span><span class="description">calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    125 -   <span class="signature">[`dsmean( N, x, stride )`][@stdlib/stats/base/dsmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
    126 -   <span class="signature">[`dsmeanors( N, x, stride )`][@stdlib/stats/base/dsmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.</span>
    127 -   <span class="signature">[`dsmeanpn( N, x, stride )`][@stdlib/stats/base/dsmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.</span>
    128 -   <span class="signature">[`dsmeanpw( N, x, stride )`][@stdlib/stats/base/dsmeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.</span>
    129 -   <span class="signature">[`dsmeanwd( N, x, stride )`][@stdlib/stats/base/dsmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.</span>
    130 -   <span class="signature">[`dsnanmean( N, x, stride )`][@stdlib/stats/base/dsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.</span>
    131 -   <span class="signature">[`dsnanmeanors( N, x, stride )`][@stdlib/stats/base/dsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.</span>
    132 -   <span class="signature">[`dsnanmeanpn( N, x, stride )`][@stdlib/stats/base/dsnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
    133 -   <span class="signature">[`dsnanmeanwd( N, x, stride )`][@stdlib/stats/base/dsnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
    134 -   <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
    135 -   <span class="signature">[`dstdevch( N, correction, x, stride )`][@stdlib/stats/base/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    136 -   <span class="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
    137 -   <span class="signature">[`dstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
    138 -   <span class="signature">[`dstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
    139 -   <span class="signature">[`dstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    140 -   <span class="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
    141 -   <span class="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
    142 -   <span class="signature">[`dvariance( N, correction, x, stride )`][@stdlib/stats/base/dvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array.</span>
    143 -   <span class="signature">[`dvariancech( N, correction, x, stride )`][@stdlib/stats/base/dvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    144 -   <span class="signature">[`dvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
    145 -   <span class="signature">[`dvariancetk( N, correction, x, stride )`][@stdlib/stats/base/dvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
    146 -   <span class="signature">[`dvariancewd( N, correction, x, stride )`][@stdlib/stats/base/dvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using Welford's algorithm.</span>
    147 -   <span class="signature">[`dvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/dvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    148 -   <span class="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
    149 -   <span class="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
    150 -   <span class="signature">[`dvarmtk( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmtk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.</span>
    151 -   <span class="signature">[`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function.</span>
    152 -   <span class="signature">[`max( N, x, stride )`][@stdlib/stats/base/max]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array.</span>
    153 -   <span class="signature">[`maxabs( N, x, stride )`][@stdlib/stats/base/maxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a strided array.</span>
    154 -   <span class="signature">[`maxsorted( N, x, stride )`][@stdlib/stats/base/maxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted strided array.</span>
    155 -   <span class="signature">[`mean( N, x, stride )`][@stdlib/stats/base/mean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array.</span>
    156 -   <span class="signature">[`meankbn( N, x, stride )`][@stdlib/stats/base/meankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.</span>
    157 -   <span class="signature">[`meankbn2( N, x, stride )`][@stdlib/stats/base/meankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.</span>
    158 -   <span class="signature">[`meanors( N, x, stride )`][@stdlib/stats/base/meanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using ordinary recursive summation.</span>
    159 -   <span class="signature">[`meanpn( N, x, stride )`][@stdlib/stats/base/meanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.</span>
    160 -   <span class="signature">[`meanpw( N, x, stride )`][@stdlib/stats/base/meanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using pairwise summation.</span>
    161 -   <span class="signature">[`meanwd( N, x, stride )`][@stdlib/stats/base/meanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array using Welford's algorithm.</span>
    162 -   <span class="signature">[`mediansorted( N, x, stride )`][@stdlib/stats/base/mediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted strided array.</span>
    163 -   <span class="signature">[`minBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/min-by]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array via a callback function.</span>
    164 -   <span class="signature">[`min( N, x, stride )`][@stdlib/stats/base/min]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array.</span>
    165 -   <span class="signature">[`minabs( N, x, stride )`][@stdlib/stats/base/minabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a strided array.</span>
    166 -   <span class="signature">[`minsorted( N, x, stride )`][@stdlib/stats/base/minsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted strided array.</span>
    167 -   <span class="signature">[`mskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array according to a mask.</span>
    168 -   <span class="signature">[`mskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array according to a mask.</span>
    169 -   <span class="signature">[`mskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/mskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array according to a mask.</span>
    170 -   <span class="signature">[`nanmaxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmax-by]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array via a callback function, ignoring `NaN` values.</span>
    171 -   <span class="signature">[`nanmax( N, x, stride )`][@stdlib/stats/base/nanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array, ignoring `NaN` values.</span>
    172 -   <span class="signature">[`nanmaxabs( N, x, stride )`][@stdlib/stats/base/nanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a strided array, ignoring `NaN` values.</span>
    173 -   <span class="signature">[`nanmean( N, x, stride )`][@stdlib/stats/base/nanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values.</span>
    174 -   <span class="signature">[`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
    175 -   <span class="signature">[`nanmeanpn( N, x, stride )`][@stdlib/stats/base/nanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
    176 -   <span class="signature">[`nanmeanwd( N, x, stride )`][@stdlib/stats/base/nanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using Welford's algorithm.</span>
    177 -   <span class="signature">[`nanminBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanmin-by]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array via a callback function, ignoring `NaN` values.</span>
    178 -   <span class="signature">[`nanmin( N, x, stride )`][@stdlib/stats/base/nanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array, ignoring `NaN` values.</span>
    179 -   <span class="signature">[`nanminabs( N, x, stride )`][@stdlib/stats/base/nanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a strided array, ignoring `NaN` values.</span>
    180 -   <span class="signature">[`nanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a strided array according to a mask, ignoring `NaN` values.</span>
    181 -   <span class="signature">[`nanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a strided array according to a mask, ignoring `NaN` values.</span>
    182 -   <span class="signature">[`nanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/nanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array according to a mask, ignoring `NaN` values.</span>
    183 -   <span class="signature">[`nanrangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/nanrange-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function, ignoring `NaN` values.</span>
    184 -   <span class="signature">[`nanrange( N, x, stride )`][@stdlib/stats/base/nanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array, ignoring `NaN` values.</span>
    185 -   <span class="signature">[`nanstdev( N, correction, x, stride )`][@stdlib/stats/base/nanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values.</span>
    186 -   <span class="signature">[`nanstdevch( N, correction, x, stride )`][@stdlib/stats/base/nanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    187 -   <span class="signature">[`nanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/nanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    188 -   <span class="signature">[`nanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/nanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    189 -   <span class="signature">[`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
    190 -   <span class="signature">[`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    191 -   <span class="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values.</span>
    192 -   <span class="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    193 -   <span class="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    194 -   <span class="signature">[`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    195 -   <span class="signature">[`nanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/nanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
    196 -   <span class="signature">[`nanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/nanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    197 -   <span class="signature">[`rangeBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/range-by]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array via a callback function.</span>
    198 -   <span class="signature">[`range( N, x, stride )`][@stdlib/stats/base/range]</span><span class="delimiter">: </span><span class="description">calculate the range of a strided array.</span>
    199 -   <span class="signature">[`scumax( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumax]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum of single-precision floating-point strided array elements.</span>
    200 -   <span class="signature">[`scumaxabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumaxabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.</span>
    201 -   <span class="signature">[`scumin( N, x, strideX, y, strideY )`][@stdlib/stats/base/scumin]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum of single-precision floating-point strided array elements.</span>
    202 -   <span class="signature">[`scuminabs( N, x, strideX, y, strideY )`][@stdlib/stats/base/scuminabs]</span><span class="delimiter">: </span><span class="description">calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.</span>
    203 -   <span class="signature">[`sdsmean( N, x, stride )`][@stdlib/stats/base/sdsmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.</span>
    204 -   <span class="signature">[`sdsmeanors( N, x, stride )`][@stdlib/stats/base/sdsmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.</span>
    205 -   <span class="signature">[`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation.</span>
    206 -   <span class="signature">[`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation.</span>
    207 -   <span class="signature">[`smax( N, x, stride )`][@stdlib/stats/base/smax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array.</span>
    208 -   <span class="signature">[`smaxabs( N, x, stride )`][@stdlib/stats/base/smaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a single-precision floating-point strided array.</span>
    209 -   <span class="signature">[`smaxabssorted( N, x, stride )`][@stdlib/stats/base/smaxabssorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a sorted single-precision floating-point strided array.</span>
    210 -   <span class="signature">[`smaxsorted( N, x, stride )`][@stdlib/stats/base/smaxsorted]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a sorted single-precision floating-point strided array.</span>
    211 -   <span class="signature">[`smean( N, x, stride )`][@stdlib/stats/base/smean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array.</span>
    212 -   <span class="signature">[`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.</span>
    213 -   <span class="signature">[`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.</span>
    214 -   <span class="signature">[`smeanli( N, x, stride )`][@stdlib/stats/base/smeanli]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    215 -   <span class="signature">[`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.</span>
    216 -   <span class="signature">[`smeanors( N, x, stride )`][@stdlib/stats/base/smeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span>
    217 -   <span class="signature">[`smeanpn( N, x, stride )`][@stdlib/stats/base/smeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.</span>
    218 -   <span class="signature">[`smeanpw( N, x, stride )`][@stdlib/stats/base/smeanpw]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.</span>
    219 -   <span class="signature">[`smeanwd( N, x, stride )`][@stdlib/stats/base/smeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.</span>
    220 -   <span class="signature">[`smediansorted( N, x, stride )`][@stdlib/stats/base/smediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted single-precision floating-point strided array.</span>
    221 -   <span class="signature">[`smidrange( N, x, stride )`][@stdlib/stats/base/smidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a single-precision floating-point strided array.</span>
    222 -   <span class="signature">[`smin( N, x, stride )`][@stdlib/stats/base/smin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array.</span>
    223 -   <span class="signature">[`sminabs( N, x, stride )`][@stdlib/stats/base/sminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a single-precision floating-point strided array.</span>
    224 -   <span class="signature">[`sminsorted( N, x, stride )`][@stdlib/stats/base/sminsorted]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a sorted single-precision floating-point strided array.</span>
    225 -   <span class="signature">[`smskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array according to a mask.</span>
    226 -   <span class="signature">[`smskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array according to a mask.</span>
    227 -   <span class="signature">[`smskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/smskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array according to a mask.</span>
    228 -   <span class="signature">[`snanmax( N, x, stride )`][@stdlib/stats/base/snanmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    229 -   <span class="signature">[`snanmaxabs( N, x, stride )`][@stdlib/stats/base/snanmaxabs]</span><span class="delimiter">: </span><span class="description">calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    230 -   <span class="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    231 -   <span class="signature">[`snanmeanors( N, x, stride )`][@stdlib/stats/base/snanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
    232 -   <span class="signature">[`snanmeanpn( N, x, stride )`][@stdlib/stats/base/snanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
    233 -   <span class="signature">[`snanmeanwd( N, x, stride )`][@stdlib/stats/base/snanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
    234 -   <span class="signature">[`snanmin( N, x, stride )`][@stdlib/stats/base/snanmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    235 -   <span class="signature">[`snanminabs( N, x, stride )`][@stdlib/stats/base/snanminabs]</span><span class="delimiter">: </span><span class="description">calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    236 -   <span class="signature">[`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]</span><span class="delimiter">: </span><span class="description">calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    237 -   <span class="signature">[`snanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    238 -   <span class="signature">[`snanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
    239 -   <span class="signature">[`snanrange( N, x, stride )`][@stdlib/stats/base/snanrange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array, ignoring `NaN` values.</span>
    240 -   <span class="signature">[`snanstdev( N, correction, x, stride )`][@stdlib/stats/base/snanstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values.</span>
    241 -   <span class="signature">[`snanstdevch( N, correction, x, stride )`][@stdlib/stats/base/snanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    242 -   <span class="signature">[`snanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/snanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    243 -   <span class="signature">[`snanstdevtk( N, correction, x, stride )`][@stdlib/stats/base/snanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    244 -   <span class="signature">[`snanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/snanstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
    245 -   <span class="signature">[`snanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/snanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    246 -   <span class="signature">[`snanvariance( N, correction, x, stride )`][@stdlib/stats/base/snanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values.</span>
    247 -   <span class="signature">[`snanvariancech( N, correction, x, stride )`][@stdlib/stats/base/snanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
    248 -   <span class="signature">[`snanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/snanvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
    249 -   <span class="signature">[`snanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/snanvariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
    250 -   <span class="signature">[`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
    251 -   <span class="signature">[`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
    252 -   <span class="signature">[`srange( N, x, stride )`][@stdlib/stats/base/srange]</span><span class="delimiter">: </span><span class="description">calculate the range of a single-precision floating-point strided array.</span>
    253 -   <span class="signature">[`sstdev( N, correction, x, stride )`][@stdlib/stats/base/sstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array.</span>
    254 -   <span class="signature">[`sstdevch( N, correction, x, stride )`][@stdlib/stats/base/sstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    255 -   <span class="signature">[`sstdevpn( N, correction, x, stride )`][@stdlib/stats/base/sstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.</span>
    256 -   <span class="signature">[`sstdevtk( N, correction, x, stride )`][@stdlib/stats/base/sstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
    257 -   <span class="signature">[`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.</span>
    258 -   <span class="signature">[`sstdevyc( N, correction, x, stride )`][@stdlib/stats/base/sstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    259 -   <span class="signature">[`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array.</span>
    260 -   <span class="signature">[`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass trial mean algorithm.</span>
    261 -   <span class="signature">[`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a two-pass algorithm.</span>
    262 -   <span class="signature">[`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass textbook algorithm.</span>
    263 -   <span class="signature">[`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using Welford's algorithm.</span>
    264 -   <span class="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    265 -   <span class="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array.</span>
    266 -   <span class="signature">[`svariancech( N, correction, x, stride )`][@stdlib/stats/base/svariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
    267 -   <span class="signature">[`svariancepn( N, correction, x, stride )`][@stdlib/stats/base/svariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.</span>
    268 -   <span class="signature">[`svariancetk( N, correction, x, stride )`][@stdlib/stats/base/svariancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
    269 -   <span class="signature">[`svariancewd( N, correction, x, stride )`][@stdlib/stats/base/svariancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
    270 -   <span class="signature">[`svarianceyc( N, correction, x, stride )`][@stdlib/stats/base/svarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    271 -   <span class="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array.</span>
    272 -   <span class="signature">[`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
    273 -   <span class="signature">[`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a two-pass algorithm.</span>
    274 -   <span class="signature">[`variancetk( N, correction, x, stride )`][@stdlib/stats/base/variancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass textbook algorithm.</span>
    275 -   <span class="signature">[`variancewd( N, correction, x, stride )`][@stdlib/stats/base/variancewd]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using Welford's algorithm.</span>
    276 -   <span class="signature">[`varianceyc( N, correction, x, stride )`][@stdlib/stats/base/varianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
    277 
    278 </div>
    279 
    280 <!-- </toc> -->
    281 
    282 </section>
    283 
    284 <!-- /.usage -->
    285 
    286 <!-- Package notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
    287 
    288 <section class="notes">
    289 
    290 </section>
    291 
    292 <!-- /.notes -->
    293 
    294 <section class="examples">
    295 
    296 ## Examples
    297 
    298 <!-- TODO: better examples -->
    299 
    300 <!-- eslint no-undef: "error" -->
    301 
    302 ```javascript
    303 var objectKeys = require( '@stdlib/utils/keys' );
    304 var ns = require( '@stdlib/stats/base' );
    305 
    306 console.log( objectKeys( ns ) );
    307 ```
    308 
    309 </section>
    310 
    311 <!-- /.examples -->
    312 
    313 <section class="links">
    314 
    315 <!-- <toc-links> -->
    316 
    317 [@stdlib/stats/base/cumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumax
    318 
    319 [@stdlib/stats/base/cumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumaxabs
    320 
    321 [@stdlib/stats/base/cumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cumin
    322 
    323 [@stdlib/stats/base/cuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/cuminabs
    324 
    325 [@stdlib/stats/base/dcumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumax
    326 
    327 [@stdlib/stats/base/dcumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumaxabs
    328 
    329 [@stdlib/stats/base/dcumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcumin
    330 
    331 [@stdlib/stats/base/dcuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dcuminabs
    332 
    333 [@stdlib/stats/base/dmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmax
    334 
    335 [@stdlib/stats/base/dmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxabs
    336 
    337 [@stdlib/stats/base/dmaxabssorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxabssorted
    338 
    339 [@stdlib/stats/base/dmaxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmaxsorted
    340 
    341 [@stdlib/stats/base/dmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmean
    342 
    343 [@stdlib/stats/base/dmeankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeankbn
    344 
    345 [@stdlib/stats/base/dmeankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeankbn2
    346 
    347 [@stdlib/stats/base/dmeanli]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanli
    348 
    349 [@stdlib/stats/base/dmeanlipw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanlipw
    350 
    351 [@stdlib/stats/base/dmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanors
    352 
    353 [@stdlib/stats/base/dmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanpn
    354 
    355 [@stdlib/stats/base/dmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanpw
    356 
    357 [@stdlib/stats/base/dmeanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanstdev
    358 
    359 [@stdlib/stats/base/dmeanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanstdevpn
    360 
    361 [@stdlib/stats/base/dmeanvar]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanvar
    362 
    363 [@stdlib/stats/base/dmeanvarpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanvarpn
    364 
    365 [@stdlib/stats/base/dmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmeanwd
    366 
    367 [@stdlib/stats/base/dmediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmediansorted
    368 
    369 [@stdlib/stats/base/dmidrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmidrange
    370 
    371 [@stdlib/stats/base/dmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmin
    372 
    373 [@stdlib/stats/base/dminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dminabs
    374 
    375 [@stdlib/stats/base/dminsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dminsorted
    376 
    377 [@stdlib/stats/base/dmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskmax
    378 
    379 [@stdlib/stats/base/dmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskmin
    380 
    381 [@stdlib/stats/base/dmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dmskrange
    382 
    383 [@stdlib/stats/base/dnanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmax
    384 
    385 [@stdlib/stats/base/dnanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmaxabs
    386 
    387 [@stdlib/stats/base/dnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmean
    388 
    389 [@stdlib/stats/base/dnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanors
    390 
    391 [@stdlib/stats/base/dnanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanpn
    392 
    393 [@stdlib/stats/base/dnanmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanpw
    394 
    395 [@stdlib/stats/base/dnanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmeanwd
    396 
    397 [@stdlib/stats/base/dnanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmin
    398 
    399 [@stdlib/stats/base/dnanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanminabs
    400 
    401 [@stdlib/stats/base/dnanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskmax
    402 
    403 [@stdlib/stats/base/dnanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskmin
    404 
    405 [@stdlib/stats/base/dnanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskrange
    406 
    407 [@stdlib/stats/base/dnanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanrange
    408 
    409 [@stdlib/stats/base/dnanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdev
    410 
    411 [@stdlib/stats/base/dnanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevch
    412 
    413 [@stdlib/stats/base/dnanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevpn
    414 
    415 [@stdlib/stats/base/dnanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevtk
    416 
    417 [@stdlib/stats/base/dnanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevwd
    418 
    419 [@stdlib/stats/base/dnanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanstdevyc
    420 
    421 [@stdlib/stats/base/dnanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariance
    422 
    423 [@stdlib/stats/base/dnanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancech
    424 
    425 [@stdlib/stats/base/dnanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancepn
    426 
    427 [@stdlib/stats/base/dnanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancetk
    428 
    429 [@stdlib/stats/base/dnanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvariancewd
    430 
    431 [@stdlib/stats/base/dnanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanvarianceyc
    432 
    433 [@stdlib/stats/base/drange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/drange
    434 
    435 [@stdlib/stats/base/dsem]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsem
    436 
    437 [@stdlib/stats/base/dsemch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemch
    438 
    439 [@stdlib/stats/base/dsempn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsempn
    440 
    441 [@stdlib/stats/base/dsemtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemtk
    442 
    443 [@stdlib/stats/base/dsemwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemwd
    444 
    445 [@stdlib/stats/base/dsemyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsemyc
    446 
    447 [@stdlib/stats/base/dsmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmean
    448 
    449 [@stdlib/stats/base/dsmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanors
    450 
    451 [@stdlib/stats/base/dsmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanpn
    452 
    453 [@stdlib/stats/base/dsmeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanpw
    454 
    455 [@stdlib/stats/base/dsmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsmeanwd
    456 
    457 [@stdlib/stats/base/dsnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmean
    458 
    459 [@stdlib/stats/base/dsnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanors
    460 
    461 [@stdlib/stats/base/dsnanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanpn
    462 
    463 [@stdlib/stats/base/dsnanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsnanmeanwd
    464 
    465 [@stdlib/stats/base/dstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdev
    466 
    467 [@stdlib/stats/base/dstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevch
    468 
    469 [@stdlib/stats/base/dstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevpn
    470 
    471 [@stdlib/stats/base/dstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevtk
    472 
    473 [@stdlib/stats/base/dstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevwd
    474 
    475 [@stdlib/stats/base/dstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevyc
    476 
    477 [@stdlib/stats/base/dsvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsvariance
    478 
    479 [@stdlib/stats/base/dsvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dsvariancepn
    480 
    481 [@stdlib/stats/base/dvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariance
    482 
    483 [@stdlib/stats/base/dvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancech
    484 
    485 [@stdlib/stats/base/dvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancepn
    486 
    487 [@stdlib/stats/base/dvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancetk
    488 
    489 [@stdlib/stats/base/dvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancewd
    490 
    491 [@stdlib/stats/base/dvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarianceyc
    492 
    493 [@stdlib/stats/base/dvarm]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarm
    494 
    495 [@stdlib/stats/base/dvarmpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarmpn
    496 
    497 [@stdlib/stats/base/dvarmtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvarmtk
    498 
    499 [@stdlib/stats/base/max-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/max-by
    500 
    501 [@stdlib/stats/base/max]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/max
    502 
    503 [@stdlib/stats/base/maxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/maxabs
    504 
    505 [@stdlib/stats/base/maxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/maxsorted
    506 
    507 [@stdlib/stats/base/mean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mean
    508 
    509 [@stdlib/stats/base/meankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meankbn
    510 
    511 [@stdlib/stats/base/meankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meankbn2
    512 
    513 [@stdlib/stats/base/meanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanors
    514 
    515 [@stdlib/stats/base/meanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanpn
    516 
    517 [@stdlib/stats/base/meanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanpw
    518 
    519 [@stdlib/stats/base/meanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/meanwd
    520 
    521 [@stdlib/stats/base/mediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mediansorted
    522 
    523 [@stdlib/stats/base/min-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/min-by
    524 
    525 [@stdlib/stats/base/min]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/min
    526 
    527 [@stdlib/stats/base/minabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/minabs
    528 
    529 [@stdlib/stats/base/minsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/minsorted
    530 
    531 [@stdlib/stats/base/mskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskmax
    532 
    533 [@stdlib/stats/base/mskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskmin
    534 
    535 [@stdlib/stats/base/mskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/mskrange
    536 
    537 [@stdlib/stats/base/nanmax-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmax-by
    538 
    539 [@stdlib/stats/base/nanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmax
    540 
    541 [@stdlib/stats/base/nanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmaxabs
    542 
    543 [@stdlib/stats/base/nanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmean
    544 
    545 [@stdlib/stats/base/nanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanors
    546 
    547 [@stdlib/stats/base/nanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanpn
    548 
    549 [@stdlib/stats/base/nanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmeanwd
    550 
    551 [@stdlib/stats/base/nanmin-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmin-by
    552 
    553 [@stdlib/stats/base/nanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmin
    554 
    555 [@stdlib/stats/base/nanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanminabs
    556 
    557 [@stdlib/stats/base/nanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskmax
    558 
    559 [@stdlib/stats/base/nanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskmin
    560 
    561 [@stdlib/stats/base/nanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanmskrange
    562 
    563 [@stdlib/stats/base/nanrange-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanrange-by
    564 
    565 [@stdlib/stats/base/nanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanrange
    566 
    567 [@stdlib/stats/base/nanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdev
    568 
    569 [@stdlib/stats/base/nanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevch
    570 
    571 [@stdlib/stats/base/nanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevpn
    572 
    573 [@stdlib/stats/base/nanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevtk
    574 
    575 [@stdlib/stats/base/nanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevwd
    576 
    577 [@stdlib/stats/base/nanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanstdevyc
    578 
    579 [@stdlib/stats/base/nanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariance
    580 
    581 [@stdlib/stats/base/nanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancech
    582 
    583 [@stdlib/stats/base/nanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancepn
    584 
    585 [@stdlib/stats/base/nanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancetk
    586 
    587 [@stdlib/stats/base/nanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvariancewd
    588 
    589 [@stdlib/stats/base/nanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/nanvarianceyc
    590 
    591 [@stdlib/stats/base/range-by]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/range-by
    592 
    593 [@stdlib/stats/base/range]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/range
    594 
    595 [@stdlib/stats/base/scumax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumax
    596 
    597 [@stdlib/stats/base/scumaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumaxabs
    598 
    599 [@stdlib/stats/base/scumin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scumin
    600 
    601 [@stdlib/stats/base/scuminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/scuminabs
    602 
    603 [@stdlib/stats/base/sdsmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsmean
    604 
    605 [@stdlib/stats/base/sdsmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsmeanors
    606 
    607 [@stdlib/stats/base/sdsnanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsnanmean
    608 
    609 [@stdlib/stats/base/sdsnanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sdsnanmeanors
    610 
    611 [@stdlib/stats/base/smax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smax
    612 
    613 [@stdlib/stats/base/smaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxabs
    614 
    615 [@stdlib/stats/base/smaxabssorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxabssorted
    616 
    617 [@stdlib/stats/base/smaxsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smaxsorted
    618 
    619 [@stdlib/stats/base/smean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smean
    620 
    621 [@stdlib/stats/base/smeankbn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeankbn
    622 
    623 [@stdlib/stats/base/smeankbn2]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeankbn2
    624 
    625 [@stdlib/stats/base/smeanli]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanli
    626 
    627 [@stdlib/stats/base/smeanlipw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanlipw
    628 
    629 [@stdlib/stats/base/smeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanors
    630 
    631 [@stdlib/stats/base/smeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanpn
    632 
    633 [@stdlib/stats/base/smeanpw]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanpw
    634 
    635 [@stdlib/stats/base/smeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smeanwd
    636 
    637 [@stdlib/stats/base/smediansorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smediansorted
    638 
    639 [@stdlib/stats/base/smidrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smidrange
    640 
    641 [@stdlib/stats/base/smin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smin
    642 
    643 [@stdlib/stats/base/sminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sminabs
    644 
    645 [@stdlib/stats/base/sminsorted]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sminsorted
    646 
    647 [@stdlib/stats/base/smskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskmax
    648 
    649 [@stdlib/stats/base/smskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskmin
    650 
    651 [@stdlib/stats/base/smskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/smskrange
    652 
    653 [@stdlib/stats/base/snanmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmax
    654 
    655 [@stdlib/stats/base/snanmaxabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmaxabs
    656 
    657 [@stdlib/stats/base/snanmean]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmean
    658 
    659 [@stdlib/stats/base/snanmeanors]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanors
    660 
    661 [@stdlib/stats/base/snanmeanpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanpn
    662 
    663 [@stdlib/stats/base/snanmeanwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmeanwd
    664 
    665 [@stdlib/stats/base/snanmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmin
    666 
    667 [@stdlib/stats/base/snanminabs]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanminabs
    668 
    669 [@stdlib/stats/base/snanmskmax]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskmax
    670 
    671 [@stdlib/stats/base/snanmskmin]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskmin
    672 
    673 [@stdlib/stats/base/snanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskrange
    674 
    675 [@stdlib/stats/base/snanrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanrange
    676 
    677 [@stdlib/stats/base/snanstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdev
    678 
    679 [@stdlib/stats/base/snanstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevch
    680 
    681 [@stdlib/stats/base/snanstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevpn
    682 
    683 [@stdlib/stats/base/snanstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevtk
    684 
    685 [@stdlib/stats/base/snanstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevwd
    686 
    687 [@stdlib/stats/base/snanstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanstdevyc
    688 
    689 [@stdlib/stats/base/snanvariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariance
    690 
    691 [@stdlib/stats/base/snanvariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancech
    692 
    693 [@stdlib/stats/base/snanvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancepn
    694 
    695 [@stdlib/stats/base/snanvariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancetk
    696 
    697 [@stdlib/stats/base/snanvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvariancewd
    698 
    699 [@stdlib/stats/base/snanvarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanvarianceyc
    700 
    701 [@stdlib/stats/base/srange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/srange
    702 
    703 [@stdlib/stats/base/sstdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdev
    704 
    705 [@stdlib/stats/base/sstdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevch
    706 
    707 [@stdlib/stats/base/sstdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevpn
    708 
    709 [@stdlib/stats/base/sstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevtk
    710 
    711 [@stdlib/stats/base/sstdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevwd
    712 
    713 [@stdlib/stats/base/sstdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevyc
    714 
    715 [@stdlib/stats/base/stdev]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdev
    716 
    717 [@stdlib/stats/base/stdevch]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevch
    718 
    719 [@stdlib/stats/base/stdevpn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevpn
    720 
    721 [@stdlib/stats/base/stdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevtk
    722 
    723 [@stdlib/stats/base/stdevwd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevwd
    724 
    725 [@stdlib/stats/base/stdevyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/stdevyc
    726 
    727 [@stdlib/stats/base/svariance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariance
    728 
    729 [@stdlib/stats/base/svariancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancech
    730 
    731 [@stdlib/stats/base/svariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancepn
    732 
    733 [@stdlib/stats/base/svariancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancetk
    734 
    735 [@stdlib/stats/base/svariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancewd
    736 
    737 [@stdlib/stats/base/svarianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svarianceyc
    738 
    739 [@stdlib/stats/base/variance]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variance
    740 
    741 [@stdlib/stats/base/variancech]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancech
    742 
    743 [@stdlib/stats/base/variancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancepn
    744 
    745 [@stdlib/stats/base/variancetk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancetk
    746 
    747 [@stdlib/stats/base/variancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/variancewd
    748 
    749 [@stdlib/stats/base/varianceyc]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/varianceyc
    750 
    751 [@stdlib/stats/base/dists]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dists
    752 
    753 <!-- </toc-links> -->
    754 
    755 </section>
    756 
    757 <!-- /.links -->