time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

main.js (2851B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var factory = require( './factory.js' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Generates a standard normally distributed random number.
     30 *
     31 * ## Method
     32 *
     33 * The basic Ziggurat method works as follows:
     34 *
     35 *
     36 *     ```tex
     37 *     x_{C-1}(r) \left[ f(0) - f\left( x_{C-1}(r) \right) \right] - V(r) = 0
     38 *     ```
     39 *
     40 *     where
     41 *
     42 *     ```tex
     43 *     V(r) = r \; f(r) + \int_r^\infty \; f(x) \; dx
     44 *     ```
     45 *
     46 *     and \\( r \\) denotes the right-most \\( x_1 \\).
     47 *
     48 * -   We then use the following rejection algorithm:
     49 *
     50 *     -   Draw a box \\( B_i \\) at random with probability \\( \tfrac{1}{C} \\).
     51 *     -   Draw a random number from the box as \\( z = U_0 x_i \\) for \\( i > 0 \\) and \\( z = U_0 V / f(x_1) \\).
     52 *     -   If \\( z < x_{i+1} \\), accept \\( z \\).
     53 *     -   If \\( i = 0 \\), accept a \\( v \\) by transforming the tail of the normal distribution to the unit interval and then use rejection technique by Marsaglia, G. (1964) to generate a standard normal variable. Otherwise, if \\( i > 0 \\) and \\( U_1 \left[ f(x_i) - f(x_{i+1})\right] < f(z) - f(x_{i+1}) \\) accept \\( z \\).
     54 *     -   Go back to the first step.
     55 *
     56 * -   The improved version by Doornik (2005) changes step four in order to correct a deficiency of the original Ziggurat algorithm. The updated version requires the generation of two random numbers, a uniform variable drawn from \\( U(-1,1) \\) and the last seven bits of a random integer.
     57 *
     58 * ## References
     59 *
     60 * -   Doornik, Jurgen A. 2005. "An Improved Ziggurat Method to Generate Normal Random Samples." <https://www.doornik.com/research/ziggurat.pdf>.
     61 * -   Marsaglia, George, and Wai Wan Tsang. 2000. "The Ziggurat Method for Generating Random Variables." _Journal of Statistical Software_ 5 (1): 1–7. doi:[10.18637/jss.v005.i08](http://dx.doi.org/10.18637/jss.v005.i08).
     62 * -   Marsaglia, George. 1964. "Generating a Variable from the Tail of the Normal Distribution." _Technometrics_ 6 (1): 101–2. doi:[10.1080/00401706.1964.10490150](http://dx.doi.org/10.1080/00401706.1964.10490150).
     63 *
     64 *
     65 * @name randn
     66 * @type {PRNG}
     67 * @returns {number} pseudorandom number
     68 *
     69 * @example
     70 * var r = randn();
     71 * // returns <number>
     72 */
     73 var randn = factory();
     74 
     75 
     76 // EXPORTS //
     77 
     78 module.exports = randn;