time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

hypergeometric.js (1902B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var hin = require( './hin.js' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Returns a pseudorandom number drawn from a hypergeometric distribution.
     30 *
     31 * ## References
     32 *
     33 * -   Kachitvichyanukul, Voratas., and Burce Schmeiser. 1985. "Computer generation of hypergeometric random variates." _Journal of Statistical Computation and Simulation_ 22 (2): 127–45. doi:[10.1080/00949658508810839][@kachitvichyanukul:1985].
     34 *
     35 * [@kachitvichyanukul:1985]: http://dx.doi.org/10.1080/00949658508810839
     36 *
     37 *
     38 * @private
     39 * @param {PRNG} rand - PRNG for uniformly distributed numbers
     40 * @param {NonNegativeInteger} N - population size
     41 * @param {NonNegativeInteger} K - subpopulation size
     42 * @param {NonNegativeInteger} n - number of draws
     43 * @returns {NonNegativeInteger} pseudorandom number
     44 */
     45 function hypergeometric( rand, N, K, n ) {
     46 	var n1;
     47 	var n2;
     48 	var k;
     49 	var x;
     50 
     51 	if ( n > N/2 ) {
     52 		k = N - n;
     53 		if ( 2*K <= N ) {
     54 			n1 = K;
     55 			n2 = N - K;
     56 			x = hin( rand, n1, n2, k );
     57 			return K - x;
     58 		}
     59 		n2 = K;
     60 		n1 = N - K;
     61 		x = hin( rand, n1, n2, k );
     62 		return n - N + K + x;
     63 	}
     64 	k = n;
     65 	if ( 2*K <= N ) {
     66 		n1 = K;
     67 		n2 = N - K;
     68 		x = hin( rand, n1, n2, k );
     69 		return x;
     70 	}
     71 	n1 = N - K;
     72 	n2 = K;
     73 	x = hin( rand, n1, n2, k );
     74 	return n - x;
     75 }
     76 
     77 
     78 // EXPORTS //
     79 
     80 module.exports = hypergeometric;