time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

sample2.js (3426B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var floor = require( '@stdlib/math/base/special/floor' );
     24 var sign = require( '@stdlib/math/base/special/signum' );
     25 var sqrt = require( '@stdlib/math/base/special/sqrt' );
     26 var abs = require( '@stdlib/math/base/special/abs' );
     27 var ln = require( '@stdlib/math/base/special/ln' );
     28 var correction = require( './correction.js' );
     29 
     30 
     31 // VARIABLES //
     32 
     33 var ONE_SIXTH = 1.0 / 6.0;
     34 
     35 
     36 // MAIN //
     37 
     38 /**
     39 * Generates a binomially distributed pseudorandom number.
     40 *
     41 * ## References
     42 *
     43 * -   Hörmann, Wolfgang. 1993. "The generation of binomial random variates." _Journal of Statistical Computation and Simulation_ 46 (1-2): 101–10. doi:[10.1080/00949659308811496][@hormann:1993a].
     44 *
     45 * [@hormann:1993a]: http://dx.doi.org/10.1080/00949659308811496
     46 *
     47 * @private
     48 * @param {PRNG} rand - PRNG for uniformly distributed numbers
     49 * @param {PositiveInteger} n - number of trials
     50 * @param {Probability} p - success probability
     51 * @returns {NonNegativeInteger} pseudorandom number
     52 */
     53 function sample( rand, n, p ) {
     54 	var alpha;
     55 	var urvr;
     56 	var snpq;
     57 	var npq;
     58 	var rho;
     59 	var tmp;
     60 	var nm;
     61 	var nr;
     62 	var us;
     63 	var km;
     64 	var nk;
     65 	var vr;
     66 	var a;
     67 	var b;
     68 	var c;
     69 	var f;
     70 	var h;
     71 	var i;
     72 	var k;
     73 	var m;
     74 	var q;
     75 	var r;
     76 	var t;
     77 	var u;
     78 	var v;
     79 	var x;
     80 
     81 	m = floor( (n + 1) * p );
     82 	nm = n - m + 1;
     83 
     84 	q = 1.0 - p;
     85 
     86 	r = p / q;
     87 	nr = (n + 1) * r;
     88 
     89 	npq = n * p * q;
     90 	snpq = sqrt( npq );
     91 
     92 	b = 1.15 + (2.53 * snpq);
     93 	a = -0.0873 + (0.0248*b) + (0.01*p);
     94 	c = (n*p) + 0.5;
     95 
     96 	alpha = (2.83 + (5.1/b)) * snpq;
     97 
     98 	vr = 0.92 - (4.2/b);
     99 	urvr = 0.86 * vr;
    100 
    101 	h = (m + 0.5) * ln( (m+1) / (r*nm) );
    102 	h += correction( m ) + correction( n-m );
    103 
    104 	while ( true ) {
    105 		v = rand();
    106 		if ( v <= urvr ) {
    107 			u = (v/vr) - 0.43;
    108 			r = (u * ( (2.0*a / (0.5 - abs(u))) + b )) + c;
    109 			return floor( r );
    110 		}
    111 		if ( v >= vr ) {
    112 			u = rand() - 0.5;
    113 		} else {
    114 			u = (v/vr) - 0.93;
    115 			u = (sign( u ) * 0.5) - u;
    116 			v = vr * rand();
    117 		}
    118 		us = 0.5 - abs(u);
    119 		k = floor( (u * ( (2.0*a/us) + b )) + c );
    120 		if ( k < 0 || k > n ) {
    121 			// Try again...
    122 			continue;
    123 		}
    124 		v = v * alpha / ( (a/(us*us)) + b );
    125 		km = abs( k - m );
    126 		if ( km > 15 ) {
    127 			v = ln( v );
    128 			rho = km / npq;
    129 			tmp = ( (km/3) + 0.625 ) * km;
    130 			tmp += ONE_SIXTH;
    131 			tmp /= npq;
    132 			rho *= tmp + 0.5;
    133 			t = -(km * km) / (2.0 * npq);
    134 			if ( v < t - rho ) {
    135 				return k;
    136 			}
    137 			if ( v <= t + rho ) {
    138 				nk = n - k + 1;
    139 				x = h + ( (n+1)*ln( nm/nk ) );
    140 				x += (k+0.5) * ln( nk*r/(k+1) );
    141 				x += -(correction( k ) + correction( n-k ));
    142 				if ( v <= x ) {
    143 					return k;
    144 				}
    145 			}
    146 		} else {
    147 			f = 1.0;
    148 			if ( m < k ) {
    149 				for ( i = m; i <= k; i++ ) {
    150 					f *= (nr/i) - r;
    151 				}
    152 			} else if ( m > k ) {
    153 				for ( i = k; i <= m; i++ ) {
    154 					v *= (nr/i) - r;
    155 				}
    156 			}
    157 			if ( v <= f ) {
    158 				return k;
    159 			}
    160 		}
    161 	}
    162 }
    163 
    164 
    165 // EXPORTS //
    166 
    167 module.exports = sample;