README.md (5755B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # iterNegaLucasSeq 22 23 > Create an iterator which generates a [negaLucas sequence][lucas-number]. 24 25 <!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. --> 26 27 <section class="intro"> 28 29 The [negaLucas numbers][lucas-number] are the integer sequence 30 31 <!-- <equation class="equation" label="eq:negalucas_sequence" align="center" raw="2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123, -199, 322, \ldots" alt="NegaLucas sequence"> --> 32 33 <div class="equation" align="center" data-raw-text="2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123, -199, 322, \ldots" data-equation="eq:negalucas_sequence"> 34 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@aa77a2f6e76d2e9da5b49bffa45ee5167d6c16e1/lib/node_modules/@stdlib/math/iter/sequences/negalucas/docs/img/equation_negalucas_sequence.svg" alt="NegaLucas sequence"> 35 <br> 36 </div> 37 38 <!-- </equation> --> 39 40 The sequence is defined by the recurrence relation 41 42 <!-- <equation class="equation" label="eq:negalucas_recurrence_relation" align="center" raw="L_{n-2} = L_{n} - L_{n-1}" alt="NegaLucas sequence recurrence relation"> --> 43 44 <div class="equation" align="center" data-raw-text="L_{n-2} = L_{n} - L_{n-1}" data-equation="eq:negalucas_recurrence_relation"> 45 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@aa77a2f6e76d2e9da5b49bffa45ee5167d6c16e1/lib/node_modules/@stdlib/math/iter/sequences/negalucas/docs/img/equation_negalucas_recurrence_relation.svg" alt="NegaLucas sequence recurrence relation"> 46 <br> 47 </div> 48 49 <!-- </equation> --> 50 51 which yields 52 53 <!-- <equation class="equation" label="eq:negalucas_lucas" align="center" raw="L_{-n} = (-1)^{n} L_n" alt="NegaLucas relationship to Lucas numbers"> --> 54 55 <div class="equation" align="center" data-raw-text="L_{-n} = (-1)^{n} L_n" data-equation="eq:negalucas_lucas"> 56 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@aa77a2f6e76d2e9da5b49bffa45ee5167d6c16e1/lib/node_modules/@stdlib/math/iter/sequences/negalucas/docs/img/equation_negalucas_lucas.svg" alt="NegaLucas relationship to Lucas numbers"> 57 <br> 58 </div> 59 60 <!-- </equation> --> 61 62 with seed values `L_0 = 2` and `L_{-1} = -1`. 63 64 </section> 65 66 <!-- /.intro --> 67 68 <!-- Package usage documentation. --> 69 70 <section class="usage"> 71 72 ## Usage 73 74 ```javascript 75 var iterNegaLucasSeq = require( '@stdlib/math/iter/sequences/negalucas' ); 76 ``` 77 78 #### iterNegaLucasSeq( \[options] ) 79 80 Returns an iterator which generates a [negaLucas sequence][lucas-number]. 81 82 ```javascript 83 var it = iterNegaLucasSeq(); 84 // returns <Object> 85 86 var v = it.next().value; 87 // returns 2 88 89 v = it.next().value; 90 // returns -1 91 92 v = it.next().value; 93 // returns 3 94 95 // ... 96 ``` 97 98 The returned iterator protocol-compliant object has the following properties: 99 100 - **next**: function which returns an iterator protocol-compliant object containing the next iterated value (if one exists) assigned to a `value` property and a `done` property having a `boolean` value indicating whether the iterator is finished. 101 - **return**: function which closes an iterator and returns a single (optional) argument in an iterator protocol-compliant object. 102 103 The function supports the following `options`: 104 105 - **iter**: number of iterations. Default: `77`. 106 107 The returned iterator can only generate the first `77` [negaLucas numbers][lucas-number], as larger [negaLucas numbers][lucas-number] cannot be safely represented in [double-precision floating-point format][ieee754]. By default, the function returns an iterator which generates all `77` numbers. To limit the number of iterations, set the `iter` option. 108 109 ```javascript 110 var opts = { 111 'iter': 2 112 }; 113 var it = iterNegaLucasSeq( opts ); 114 // returns <Object> 115 116 var v = it.next().value; 117 // returns 2 118 119 v = it.next().value; 120 // returns -1 121 122 var bool = it.next().done; 123 // returns true 124 ``` 125 126 </section> 127 128 <!-- /.usage --> 129 130 <!-- Package usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> 131 132 <section class="notes"> 133 134 ## Notes 135 136 - If an environment supports `Symbol.iterator`, the returned iterator is iterable. 137 138 </section> 139 140 <!-- /.notes --> 141 142 <!-- Package usage examples. --> 143 144 <section class="examples"> 145 146 ## Examples 147 148 <!-- eslint no-undef: "error" --> 149 150 ```javascript 151 var iterNegaLucasSeq = require( '@stdlib/math/iter/sequences/negalucas' ); 152 153 // Create an iterator: 154 var it = iterNegaLucasSeq(); 155 156 // Perform manual iteration... 157 var v; 158 while ( true ) { 159 v = it.next(); 160 if ( v.done ) { 161 break; 162 } 163 console.log( v.value ); 164 } 165 ``` 166 167 </section> 168 169 <!-- /.examples --> 170 171 <!-- Section to include cited references. If references are included, add a horizontal rule *before* the section. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> 172 173 <section class="references"> 174 175 </section> 176 177 <!-- /.references --> 178 179 <!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> 180 181 <section class="links"> 182 183 [lucas-number]: https://en.wikipedia.org/wiki/Lucas_number 184 185 [ieee754]: https://en.wikipedia.org/wiki/IEEE_754-1985 186 187 </section> 188 189 <!-- /.links -->