time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1675B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var evalpoly = require( './../../../../base/tools/evalpoly' ).factory;
     24 var pow = require( './../../../../base/special/pow' );
     25 var abs = require( './../../../../base/special/abs' );
     26 var coefficients = require( './coefficients.js' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating a Lucas polynomial.
     33 *
     34 * @param {integer} n - Lucas polynomial to evaluate
     35 * @returns {Function} function for evaluating a Lucas polynomial
     36 *
     37 * @example
     38 * var polyval = factory( 5 );
     39 *
     40 * var v = polyval( 1.0 );
     41 * // returns 11.0
     42 *
     43 * v = polyval( 2.0 );
     44 * // returns 82.0
     45 */
     46 function factory( n ) {
     47 	var coefs;
     48 	var an;
     49 	var f;
     50 	var s;
     51 
     52 	an = abs( n );
     53 	coefs = coefficients( an );
     54 
     55 	f = evalpoly( coefs );
     56 	s = pow( -1.0, an );
     57 	if ( n >= 0 || s === 1.0 ) {
     58 		return f;
     59 	}
     60 	return polyval;
     61 
     62 	/**
     63 	* Evaluates a Lucas polynomial.
     64 	*
     65 	* @private
     66 	* @param {number} x - value at which to evaluate a Lucas polynomial
     67 	* @returns {number} result
     68 	*/
     69 	function polyval( x ) {
     70 		return -1.0 * f( x );
     71 	}
     72 }
     73 
     74 
     75 // EXPORTS //
     76 
     77 module.exports = factory;