time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5174B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Fibonacci Polynomial
     22 
     23 > Evaluate a [Fibonacci polynomial][fibonacci-polynomials].
     24 
     25 <section class="intro">
     26 
     27 A [Fibonacci polynomial][fibonacci-polynomials] is expressed according to the following recurrence relation
     28 
     29 <!-- <equation class="equation" label="eq:fibonacci_polynomial" align="center" raw="F_n(x) = \begin{cases}0 & \textrm{if}\ n = 0\\1 & \textrm{if}\ n = 1\\x \cdot F_{n-1}(x) + F_{n-2}(x) & \textrm{if}\ n \geq 2\end{cases}" alt="Fibonacci polynomial."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="F_n(x) = \begin{cases}0 &amp; \textrm{if}\ n = 0\\1 &amp; \textrm{if}\ n = 1\\x \cdot F_{n-1}(x) + F_{n-2}(x) &amp; \textrm{if}\ n \geq 2\end{cases}" data-equation="eq:fibonacci_polynomial">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/fibpoly/docs/img/equation_fibonacci_polynomial.svg" alt="Fibonacci polynomial.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 Alternatively, if `F(n,k)` is the coefficient of `x^k` in `F_n(x)`, then
     39 
     40 <!-- <equation class="equation" label="eq:fibonacci_polynomial_combinatoric" align="center" raw="F_n(x) = \sum_{k = 0}^n F(n,k) x^k" alt="Combinatoric interpretation of a Fibonacci polynomial."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="F_n(x) = \sum_{k = 0}^n F(n,k) x^k" data-equation="eq:fibonacci_polynomial_combinatoric">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/fibpoly/docs/img/equation_fibonacci_polynomial_combinatoric.svg" alt="Combinatoric interpretation of a Fibonacci polynomial.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 where
     50 
     51 <!-- <equation class="equation" label="eq:fibonacci_polynomial_coefficients" align="center" raw="F(n,k) = {{\frac{n+k-1}{2}} \choose {k}}" alt="Fibonacci polynomial coefficients."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="F(n,k) = {{\frac{n+k-1}{2}} \choose {k}}" data-equation="eq:fibonacci_polynomial_coefficients">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/fibpoly/docs/img/equation_fibonacci_polynomial_coefficients.svg" alt="Fibonacci polynomial coefficients.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 We can extend [Fibonacci polynomials][fibonacci-polynomials] to negative `n` using the identity
     61 
     62 <!-- <equation class="equation" label="eq:negafibonacci_polynomial" align="center" raw="F_{-n}(x) = (-1)^{n-1} F_n(x)" alt="NegaFibonacci polynomial."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="F_{-n}(x) = (-1)^{n-1} F_n(x)" data-equation="eq:negafibonacci_polynomial">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/fibpoly/docs/img/equation_negafibonacci_polynomial.svg" alt="NegaFibonacci polynomial.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 </section>
     72 
     73 <!-- /.intro -->
     74 
     75 <section class="usage">
     76 
     77 ## Usage
     78 
     79 ```javascript
     80 var fibpoly = require( '@stdlib/math/base/tools/fibpoly' );
     81 ```
     82 
     83 #### fibpoly( n, x )
     84 
     85 Evaluates a [Fibonacci polynomial][fibonacci-polynomials] at a value `x`.
     86 
     87 ```javascript
     88 var v = fibpoly( 5, 2.0 ); // => 2^4 + 3*2^2 + 1
     89 // returns 29.0
     90 ```
     91 
     92 #### fibpoly.factory( n )
     93 
     94 Uses code generation to generate a `function` for evaluating a [Fibonacci polynomial][fibonacci-polynomials].
     95 
     96 ```javascript
     97 var polyval = fibpoly.factory( 5 );
     98 
     99 var v = polyval( 1.0 ); // => 1^4 + 3*1^2 + 1
    100 // returns 5.0
    101 
    102 v = polyval( 2.0 ); // => 2^4 + 3*2^2 + 1
    103 // returns 29.0
    104 ```
    105 
    106 </section>
    107 
    108 <!-- /.usage -->
    109 
    110 <section class="notes">
    111 
    112 ## Notes
    113 
    114 -   For hot code paths, a compiled function will be more performant than `fibpoly()`.
    115 -   While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
    116 
    117 </section>
    118 
    119 <!-- /.notes -->
    120 
    121 <section class="examples">
    122 
    123 ## Examples
    124 
    125 <!-- eslint no-undef: "error" -->
    126 
    127 ```javascript
    128 var fibpoly = require( '@stdlib/math/base/tools/fibpoly' );
    129 
    130 var i;
    131 
    132 // Compute the negaFibonacci and Fibonacci numbers...
    133 for ( i = -77; i < 78; i++ ) {
    134     console.log( 'F_%d = %d', i, fibpoly( i, 1.0 ) );
    135 }
    136 ```
    137 
    138 </section>
    139 
    140 <!-- /.examples -->
    141 
    142 <section class="links">
    143 
    144 [fibonacci-polynomials]: https://en.wikipedia.org/wiki/Fibonacci_polynomials
    145 
    146 [mdn-csp]: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
    147 
    148 </section>
    149 
    150 <!-- /.links -->