time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5458B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # evalrational
     22 
     23 > Evaluate a [rational function][rational-function].
     24 
     25 <section class="intro">
     26 
     27 A [rational function][rational-function] `f(x)` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:rational_function" align="center" raw="f(x) = \frac{P(x)}{Q(x)}" alt="Rational function definition."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x) = \frac{P(x)}{Q(x)}" data-equation="eq:rational_function">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/evalrational/docs/img/equation_rational_function.svg" alt="Rational function definition.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where both `P(x)` and `Q(x)` are polynomials in `x`. A [polynomial][polynomial] in `x` can be expressed
     39 
     40 <!-- <equation class="equation" label="eq:polynomial" align="center" raw="c_nx^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0 = \sum_{i=0}^{n} c_ix^i" alt="Polynomial expression."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="c_nx^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0 = \sum_{i=0}^{n} c_ix^i" data-equation="eq:polynomial">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/evalrational/docs/img/equation_polynomial.svg" alt="Polynomial expression.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 where `c_n, c_{n-1}, ..., c_0` are constants.
     50 
     51 </section>
     52 
     53 <!-- /.intro -->
     54 
     55 <section class="usage">
     56 
     57 ## Usage
     58 
     59 ```javascript
     60 var evalrational = require( '@stdlib/math/base/tools/evalrational' );
     61 ```
     62 
     63 #### evalrational( P, Q, x )
     64 
     65 Evaluates a [rational function][rational-function] at a value `x`. The coefficients `P` and `Q` are expected to be arrays of the **same** length.
     66 
     67 ```javascript
     68 var P = [ -6.0, -5.0 ];
     69 var Q = [ 3.0, 0.5 ];
     70 
     71 var v = evalrational( P, Q, 6.0 ); //  => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
     72 // returns -6.0
     73 ```
     74 
     75 For polynomials of different degree, the coefficient array for the lower degree [polynomial][polynomial] should be padded with zeros.
     76 
     77 ```javascript
     78 // 2x^3 + 4x^2 - 5x^1 - 6x^0 => degree 4
     79 var P = [ -6.0, -5.0, 4.0, 2.0 ];
     80 
     81 // 0.5x^1 + 3x^0 => degree 2
     82 var Q = [ 3.0, 0.5, 0.0, 0.0 ]; // zero-padded
     83 
     84 var v = evalrational( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 + 4*6^2 + 2*6^3 ) / ( 3*6^0 + 0.5*6^1 + 0*6^2 + 0*6^3 ) = (-6-30+144+432)/(3+3)
     85 // returns 90.0
     86 ```
     87 
     88 Coefficients should be ordered in **ascending** degree, thus matching summation notation.
     89 
     90 #### evalrational.factory( P, Q )
     91 
     92 Uses code generation to in-line coefficients and return a `function` for evaluating a [rational function][rational-function].
     93 
     94 ```javascript
     95 var P = [ 20.0, 8.0, 3.0 ];
     96 var Q = [ 10.0, 9.0, 1.0 ];
     97 
     98 var rational = evalrational.factory( P, Q );
     99 
    100 var v = rational( 10.0 ); // => (20*10^0 + 8*10^1 + 3*10^2) / (10*10^0 + 9*10^1 + 1*10^2) = (20+80+300)/(10+90+100)
    101 // returns 2.0
    102 
    103 v = rational( 2.0 ); // => (20*2^0 + 8*2^1 + 3*2^2) / (10*2^0 + 9*2^1 + 1*2^2) = (20+16+12)/(10+18+4)
    104 // returns 1.5
    105 ```
    106 
    107 </section>
    108 
    109 <!-- /.usage -->
    110 
    111 <section class="notes">
    112 
    113 ## Notes
    114 
    115 -   For hot code paths in which coefficients are invariant, a compiled function will be more performant than `evalrational()`.
    116 -   While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
    117 
    118 </section>
    119 
    120 <!-- /.notes -->
    121 
    122 <section class="examples">
    123 ## Examples
    124 
    125 <!-- eslint no-undef: "error" -->
    126 
    127 ```javascript
    128 var randu = require( '@stdlib/random/base/randu' );
    129 var round = require( '@stdlib/math/base/special/round' );
    130 var Float64Array = require( '@stdlib/array/float64' );
    131 var evalrational = require( '@stdlib/math/base/tools/evalrational' );
    132 
    133 var rational;
    134 var sign;
    135 var len;
    136 var P;
    137 var Q;
    138 var v;
    139 var i;
    140 
    141 // Create two arrays of random coefficients...
    142 len = 10;
    143 P = new Float64Array( len );
    144 Q = new Float64Array( len );
    145 for ( i = 0; i < len; i++ ) {
    146     if ( randu() < 0.5 ) {
    147         sign = -1.0;
    148     } else {
    149         sign = 1.0;
    150     }
    151     P[ i ] = sign * round( randu()*100 );
    152     Q[ i ] = sign * round( randu()*100 );
    153 }
    154 
    155 // Evaluate the rational function at random values...
    156 for ( i = 0; i < 100; i++ ) {
    157     v = randu() * 100.0;
    158     console.log( 'f(%d) = %d', v, evalrational( P, Q, v ) );
    159 }
    160 
    161 // Generate an `evalrational` function...
    162 rational = evalrational.factory( P, Q );
    163 for ( i = 0; i < 100; i++ ) {
    164     v = (randu()*100.0) - 50.0;
    165     console.log( 'f(%d) = %d', v, rational( v ) );
    166 }
    167 ```
    168 
    169 </section>
    170 
    171 <!-- /.examples -->
    172 
    173 <section class="links">
    174 
    175 [polynomial]: https://en.wikipedia.org/wiki/Polynomial
    176 
    177 [rational-function]: https://en.wikipedia.org/wiki/Rational_function
    178 
    179 [mdn-csp]: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
    180 
    181 </section>
    182 
    183 <!-- /.links -->