time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

sici.js (4918B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 *
     18 *
     19 * ## Notice
     20 *
     21 * The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified for JavaScript.
     22 *
     23 * ```text
     24 * Copyright 1984, 1987, 1989 by Stephen L. Moshier
     25 *
     26 * Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee.
     27 *
     28 * Stephen L. Moshier
     29 * moshier@na-net.ornl.gov
     30 * ```
     31 */
     32 
     33 'use strict';
     34 
     35 // MODULES //
     36 
     37 var isInfinite = require( './../../../../base/assert/is-infinite' );
     38 var isnan = require( './../../../../base/assert/is-nan' );
     39 var cos = require( './../../../../base/special/cos' );
     40 var sin = require( './../../../../base/special/sin' );
     41 var ln = require( './../../../../base/special/ln' );
     42 var HALF_PI = require( '@stdlib/constants/float64/half-pi' );
     43 var GAMMA = require( '@stdlib/constants/float64/eulergamma' );
     44 var NINF = require( '@stdlib/constants/float64/ninf' );
     45 var polyvalFN4 = require( './polyval_fn4.js' );
     46 var polyvalFD4 = require( './polyval_fd4.js' );
     47 var polyvalFN8 = require( './polyval_fn8.js' );
     48 var polyvalFD8 = require( './polyval_fd8.js' );
     49 var polyvalGN4 = require( './polyval_gn4.js' );
     50 var polyvalGD4 = require( './polyval_gd4.js' );
     51 var polyvalGN8 = require( './polyval_gn8.js' );
     52 var polyvalGD8 = require( './polyval_gd8.js' );
     53 var polyvalSN = require( './polyval_sn.js' );
     54 var polyvalSD = require( './polyval_sd.js' );
     55 var polyvalCN = require( './polyval_cn.js' );
     56 var polyvalCD = require( './polyval_cd.js' );
     57 
     58 
     59 // MAIN //
     60 
     61 /**
     62 * Computes the sine and cosine integrals.
     63 *
     64 * ## Method
     65 *
     66 * -   The integrals are approximated by rational functions.
     67 *
     68 * -   For \\( x > 8 \\), auxiliary functions \\( f(x) \\) and \\( g(x) \\) are employed such that
     69 *
     70 *     ```tex
     71 *     \operatorname{Ci}(x) = f(x) \sin(x) - g(x) \cos(x) \\
     72 *     \operatorname{Si}(x) = \pi/2 - f(x) \cos(x) - g(x) \sin(x)
     73 *     ```
     74 *
     75 * ## Notes
     76 *
     77 * -   Absolute error on test interval \\( \[0,50\] \\), except relative when greater than \\( 1 \\):
     78 *
     79 *     | arithmetic | function    | # trials | peak    | rms     |
     80 *     |:----------:|:-----------:|:--------:|:-------:|:-------:|
     81 *     | IEEE       | Si          | 30000    | 4.4e-16 | 7.3e-17 |
     82 *     | IEEE       | Ci          | 30000    | 6.9e-16 | 5.1e-17 |
     83 *
     84 *
     85 * @private
     86 * @param {(Array|TypedArray|Object)} out - output array
     87 * @param {number} x - input value
     88 * @returns {(Array|TypedArray|Object)} output array
     89 *
     90 * @example
     91 * var v = sici( [ 0.0, 0.0 ], 3.0 );
     92 * // returns [ ~1.849, ~0.12 ]
     93 *
     94 * @example
     95 * var v = sici( [ 0.0, 0.0 ], 0.0 );
     96 * // returns [ 0.0, -Infinity  ]
     97 *
     98 * @example
     99 * var v = sici( [ 0.0, 0.0 ], -9.0 );
    100 * // returns [ ~-1.665, ~0.055 ]
    101 *
    102 * @example
    103 * var v = sici( [ 0.0, 0.0 ], NaN );
    104 * // returns [ NaN, NaN ]
    105 */
    106 function sici( out, x ) {
    107 	var sgn;
    108 	var si;
    109 	var ci;
    110 	var c;
    111 	var f;
    112 	var g;
    113 	var s;
    114 	var z;
    115 
    116 	if ( isnan( x ) ) {
    117 		out[ 0 ] = NaN;
    118 		out[ 1 ] = NaN;
    119 		return out;
    120 	}
    121 	if ( x < 0.0 ) {
    122 		sgn = -1;
    123 		x = -x;
    124 	} else {
    125 		sgn = 0;
    126 	}
    127 	if ( x === 0.0 ) {
    128 		out[ 0 ] = 0.0;
    129 		out[ 1 ] = NINF;
    130 		return out;
    131 	}
    132 	if ( x > 1.0e9 ) {
    133 		if ( isInfinite( x ) ) {
    134 			if ( sgn === -1 ) {
    135 				si = -HALF_PI;
    136 				ci = NaN;
    137 			} else {
    138 				si = HALF_PI;
    139 				ci = 0.0;
    140 			}
    141 			out[ 0 ] = si;
    142 			out[ 1 ] = ci;
    143 			return out;
    144 		}
    145 		si = HALF_PI - ( cos( x ) / x );
    146 		ci = sin( x ) / x;
    147 	}
    148 	if ( x > 4.0 ) {
    149 		s = sin( x );
    150 		c = cos( x );
    151 		z = 1.0 / ( x*x );
    152 		if ( x < 8.0 ) {
    153 			f = polyvalFN4( z ) / ( x * polyvalFD4( z ) );
    154 			g = z * polyvalGN4( z ) / polyvalGD4( z );
    155 		} else {
    156 			f = polyvalFN8( z ) / ( x * polyvalFD8( z ) );
    157 			g = z * polyvalGN8( z ) / polyvalGD8( z );
    158 		}
    159 		si = HALF_PI - ( f*c ) - ( g*s );
    160 		if ( sgn ) {
    161 			si = -si;
    162 		}
    163 		ci = ( f*s ) - ( g*c );
    164 		out[ 0 ] = si;
    165 		out[ 1 ] = ci;
    166 		return out;
    167 	}
    168 	z = x * x;
    169 	s = x * polyvalSN( z ) / polyvalSD( z );
    170 	c = z * polyvalCN( z ) / polyvalCD( z );
    171 	if ( sgn ) {
    172 		s = -s;
    173 	}
    174 	si = s;
    175 	ci = GAMMA + ln( x ) + c; // real part if x < 0
    176 	out[ 0 ] = si;
    177 	out[ 1 ] = ci;
    178 	return out;
    179 }
    180 
    181 
    182 // EXPORTS //
    183 
    184 module.exports = sici;