polynomial_series.js (2421B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 * 18 * 19 * ## Notice 20 * 21 * The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_60_0/boost/math/special_functions/zeta.hpp}. The implementation follows the original, but has been modified for JavaScript. 22 * 23 * ```text 24 * (C) Copyright John Maddock 2006. 25 * 26 * Use, modification and distribution are subject to the 27 * Boost Software License, Version 1.0. (See accompanying file 28 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt) 29 * ``` 30 */ 31 32 'use strict'; 33 34 // MODULES // 35 36 var pow = require( './../../../../base/special/pow' ); 37 var powm1 = require( './../../../../base/special/powm1' ); 38 39 40 // VARIABLES // 41 42 // -ln(eps)/2 => -ln(2.220446049250313e-16)/2 = 18.021826694558577 43 var N = 18|0; // asm type annotation 44 45 // 2**N 46 var TWO_N = 262144|0; // asm type annotation 47 var NEG_TWO_N = -TWO_N; 48 49 50 // MAIN // 51 52 /** 53 * Evaluates the Riemann zeta function using a polynomial series. 54 * 55 * ## References 56 * 57 * - P. Borwein. "An Efficient Algorithm for the Riemann Zeta Function". Canadian Mathematical Society, Conference Proceedings. See algorithm [3][p155]. 58 * 59 * [p155]: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf 60 * 61 * @private 62 * @param {number} s - input value 63 * @returns {number} function value 64 * 65 * @example 66 * var v = series( 3.0 ); 67 * // returns ~1.202 68 */ 69 function series( s ) { 70 var sign; 71 var term; 72 var sum; 73 var tmp; 74 var N2; 75 var i; 76 77 sum = 0.0; 78 sign = 1; 79 for ( i = 0; i < N; i++ ) { 80 sum += sign * NEG_TWO_N / pow(i+1, s); 81 sign *= -1; // flip the sign 82 } 83 tmp = 1.0; 84 term = 1.0; 85 N2 = 2 * N; 86 for ( i = N; i <= N2-1; i++ ) { 87 sum += sign * (tmp - TWO_N) / pow(i+1, s); 88 sign *= -1; // flip the sign 89 term *= N2 - i; 90 term /= i - N + 1.0; 91 tmp += term; 92 } 93 return sum / (TWO_N * powm1(2.0, 1.0-s)); 94 } 95 96 97 // EXPORTS // 98 99 module.exports = series;