time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

polycotpi.js (8228B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 *
     18 *
     19 * ## Notice
     20 *
     21 * The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_65_0/boost/math/special_functions/detail/polygamma.hpp}. The implementation follows the original but has been modified for JavaScript.
     22 *
     23 * ```text
     24 * (C) Copyright Nikhar Agrawal 2013.
     25 * (C) Copyright Christopher Kormanyos 2013.
     26 * (C) Copyright John Maddock 2014.
     27 * (C) Copyright Paul Bristow 2013.
     28 *
     29 * Use, modification and distribution are subject to the
     30 * Boost Software License, Version 1.0. (See accompanying file
     31 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
     32 * ```
     33 */
     34 
     35 'use strict';
     36 
     37 // MODULES //
     38 
     39 var logger = require( 'debug' );
     40 var evalpoly = require( './../../../../base/tools/evalpoly' );
     41 var gammaln = require( './../../../../base/special/gammaln' );
     42 var signum = require( './../../../../base/special/signum' );
     43 var cospi = require( './../../../../base/special/cospi' );
     44 var sinpi = require( './../../../../base/special/sinpi' );
     45 var abs = require( './../../../../base/special/abs' );
     46 var exp = require( './../../../../base/special/exp' );
     47 var pow = require( './../../../../base/special/pow' );
     48 var ln = require( './../../../../base/special/ln' );
     49 var MAX_LN = require( '@stdlib/constants/float64/max-ln' );
     50 var PINF = require( '@stdlib/constants/float64/pinf' );
     51 var NINF = require( '@stdlib/constants/float64/ninf' );
     52 var LN_PI = require( '@stdlib/constants/float64/ln-pi' );
     53 var PI = require( '@stdlib/constants/float64/pi' );
     54 var polyval3 = require( './polyval_p3.js' );
     55 var polyval4 = require( './polyval_p4.js' );
     56 var polyval5 = require( './polyval_p5.js' );
     57 var polyval6 = require( './polyval_p6.js' );
     58 var polyval7 = require( './polyval_p7.js' );
     59 var polyval8 = require( './polyval_p8.js' );
     60 var polyval9 = require( './polyval_p9.js' );
     61 var polyval10 = require( './polyval_p10.js' );
     62 var polyval11 = require( './polyval_p11.js' );
     63 var polyval12 = require( './polyval_p12.js' );
     64 
     65 
     66 // VARIABLES //
     67 
     68 var debug = logger( 'polygamma' );
     69 var MAX_SERIES_ITERATIONS = 1000000;
     70 
     71 // π raised to powers two to twelve (obtained from Wolfram Alpha):
     72 var PI2 = 9.869604401089358;
     73 var PI3 = 31.00627668029982;
     74 var PI4 = 97.40909103400244;
     75 var PI5 = 306.01968478528147;
     76 var PI6 = 961.3891935753045;
     77 var PI7 = 3020.2932277767923;
     78 var PI8 = 9488.531016070574;
     79 var PI9 = 29809.09933344621;
     80 var PI10 = 93648.04747608303;
     81 var PI11 = 294204.0179738906;
     82 var PI12 = 924269.1815233742;
     83 
     84 // Derivative memoization table:
     85 var table = [
     86 	[ -1.0 ]
     87 ];
     88 
     89 
     90 // FUNCTIONS //
     91 
     92 /**
     93 * Returns an array of zeros of the specified length.
     94 *
     95 * @private
     96 * @param {NonNegativeInteger} len - array length
     97 * @returns {Array} array of zeros
     98 */
     99 function zeros( len ) {
    100 	var out;
    101 	var i;
    102 
    103 	out = [];
    104 	for ( i = 0; i < len; i++ ) {
    105 		out.push( 0.0 );
    106 	}
    107 	return out;
    108 }
    109 
    110 /**
    111 * Updates the derivatives table.
    112 *
    113 * @private
    114 * @param {PositiveInteger} n - derivative
    115 */
    116 function calculateDerivatives( n ) {
    117 	var noffset; // offset for next row
    118 	var offset; // 1 if the first cos power is 0; otherwise 0
    119 	var ncols; // how many entries there are in the current row
    120 	var mcols; // how many entries there will be in the next row
    121 	var mo; // largest order of the polynomial of cos terms
    122 	var so; // order of the sin term
    123 	var co; // order of the cosine term in entry "j"
    124 	var i;
    125 	var j;
    126 	var k;
    127 
    128 	for ( i = table.length-1; i < n-1; i++ ) {
    129 		offset = ( i&1 )|0;
    130 		so = ( i+2 )|0;
    131 		mo = ( so-1 )|0;
    132 		ncols = ( (mo-offset)/2 )|0;
    133 		noffset = ( offset ) ? 0 : 1;
    134 		mcols = ( (mo+1-noffset)/2 )|0;
    135 		table.push( zeros( mcols+1 ) );
    136 		for ( j = 0; j <= ncols; j++ ) {
    137 			co = ( (2*j)+offset )|0;
    138 			k = ( (co+1)/2 )|0;
    139 			table[ i+1 ][ k ] += ((co-so)*table[i][j]) / (so-1);
    140 			if ( co ) {
    141 				k = ( (co-1)/2 )|0;
    142 				table[ i+1 ][ k ] += (-co*table[i][j]) / (so-1);
    143 			}
    144 		}
    145 	}
    146 }
    147 
    148 
    149 // MAIN //
    150 
    151 /**
    152 * Returns n'th derivative of \\(\operatorname{cot|(\pi x)\\) at \\(x\\).
    153 *
    154 * ## Notes
    155 *
    156 * -   The derivatives are simply tabulated for up to \\(n = 9\\), beyond that it is possible to calculate coefficients as follows. The general form of each derivative is:
    157 *
    158 *     ```tex
    159 *     \pi^n * \sum_{k=0}^n C[k,n] \cdot \cos^k(\pi \cdot x) \cdot \operatorname{csc}^{(n+1)}(\pi \cdot x)
    160 *     ```
    161 *
    162 *     with constant \\( C\[0,1\] = -1 \\) and all other \\( C\[k,n\] = 0 \)). Then for each \\( k < n+1 \\):
    163 *
    164 *     ```tex
    165 *     \begin{align*}
    166 *     C[k-1, n+1]  &-= k * C[k, n]; \\
    167 *     C[k+1, n+1]  &+= (k-n-1) * C[k, n];
    168 *     \end{align*}
    169 *     ```
    170 *
    171 * -   Note that there are many different ways of representing this derivative thanks to the many trigonometric identities available. In particular, the sum of powers of cosines could be replaced by a sum of cosine multiple angles, and, indeed, if you plug the derivative into Mathematica, this is the form it will give. The two forms are related via the Chebeshev polynomials of the first kind and \\( T_n(\cos(x)) = \cos(n x) \\). The polynomial form has the great advantage that all the cosine terms are zero at half integer arguments - right where this function has it's minimum - thus avoiding cancellation error in this region.
    172 *
    173 * -   And finally, since every other term in the polynomials is zero, we can save space by only storing the non-zero terms. This greatly increases complexity when subscripting the tables in the calculation, but halves the storage space (and complexity for that matter).
    174 *
    175 *
    176 * @private
    177 * @param {PositiveInteger} n - derivative to evaluate
    178 * @param {number} x - input
    179 * @param {number} xc - one minus `x`
    180 * @returns {number} n'th derivative
    181 */
    182 function polycotpi( n, x, xc ) {
    183 	var powTerms;
    184 	var idx;
    185 	var out;
    186 	var sum;
    187 	var c;
    188 	var s;
    189 
    190 	s = ( abs( x ) < abs( xc ) ) ? sinpi( x ) : sinpi( xc );
    191 	c = cospi( x );
    192 	switch ( n ) { // eslint-disable-line default-case
    193 	case 1:
    194 		return -PI / ( s * s );
    195 	case 2:
    196 		return 2.0 * PI2 * c / pow( s, 3.0 );
    197 	case 3:
    198 		return PI3 * polyval3( c*c ) / pow( s, 4.0 );
    199 	case 4:
    200 		return PI4 * c * polyval4( c*c ) / pow( s, 5.0 );
    201 	case 5:
    202 		return PI5 * polyval5( c*c ) / pow( s, 6.0 );
    203 	case 6:
    204 		return PI6 * c * polyval6( c*c ) / pow( s, 7.0 );
    205 	case 7:
    206 		return PI7 * polyval7( c*c ) / pow( s, 8.0 );
    207 	case 8:
    208 		return PI8 * c * polyval8( c*c ) / pow( s, 9.0 );
    209 	case 9:
    210 		return PI9 * polyval9( c*c ) / pow( s, 10.0 );
    211 	case 10:
    212 		return PI10 * c * polyval10( c*c ) / pow( s, 11.0 );
    213 	case 11:
    214 		return PI11 * polyval11( c*c ) / pow( s, 12.0 );
    215 	case 12:
    216 		return PI12 * c * polyval12( c*c ) / pow( s, 13.0 );
    217 	}
    218 	// We'll have to compute the coefficients up to `n`, complexity is O(n^2) which we don't worry about as the values are computed once and then cached. However, if the final evaluation would have too many terms just bail out right away:
    219 	if ( n/2 > MAX_SERIES_ITERATIONS ) {
    220 		debug( 'The value of `n` is so large that we\'re unable to compute the result in reasonable time.' );
    221 		return NaN;
    222 	}
    223 	idx = n - 1;
    224 	if ( idx >= table.length ) {
    225 		// Lazily calculate derivatives:
    226 		calculateDerivatives( n );
    227 	}
    228 	sum = evalpoly( table[ idx ], c*c );
    229 	if ( idx & 1 ) {
    230 		sum *= c; // First coefficient is order 1, and really an odd polynomial.
    231 	}
    232 	if ( sum === 0.0 ) {
    233 		return sum;
    234 	}
    235 	// The remaining terms are computed using logs since the powers and factorials get real large real quick:
    236 	powTerms = n * LN_PI;
    237 	if ( s === 0.0 ) {
    238 		return ( sum >= 0.0 ) ? PINF : NINF;
    239 	}
    240 	powTerms -= ln( abs( s ) ) * ( n+1 );
    241 	powTerms += gammaln( n ) + ln( abs(sum) );
    242 
    243 	if ( powTerms > MAX_LN ) {
    244 		return ( sum >= 0.0 ) ? PINF : NINF;
    245 	}
    246 	out = exp( powTerms ) * signum( sum );
    247 	if ( s < 0.0 && ( (n+1)&1 ) ) {
    248 		out *= -1;
    249 	}
    250 	return out;
    251 }
    252 
    253 
    254 // EXPORTS //
    255 
    256 module.exports = polycotpi;