time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (3240B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Kernel Sine
     22 
     23 > Compute the [sine][sine] of a number on `[-π/4, π/4]`.
     24 
     25 <section class="usage">
     26 
     27 ## Usage
     28 
     29 ```javascript
     30 var kernelSin = require( '@stdlib/math/base/special/kernel-sin' );
     31 ```
     32 
     33 #### kernelSin( x, y )
     34 
     35 Computes the [sine][sine] of a `number` on `[-π/4, π/4]`. For increased accuracy, the number for which the [sine][sine] should be evaluated can be supplied as a [double-double number][double-double-arithmetic] (i.e., a non-evaluated sum of two [double-precision floating-point numbers][ieee754] `x` and `y`).
     36 
     37 ```javascript
     38 var v = kernelSin( 0.0, 0.0 );
     39 // returns ~0.0
     40 
     41 v = kernelSin( 3.141592653589793/6.0, 0.0 );
     42 // returns ~0.5
     43 
     44 v = kernelSin( 0.619, 9.279e-18 );
     45 // returns ~0.58
     46 
     47 v = kernelSin( NaN, 0.0 );
     48 // returns NaN
     49 
     50 v = kernelSin( 3.0, NaN );
     51 // returns NaN
     52 
     53 v = kernelSin( NaN, NaN );
     54 // returns NaN
     55 ```
     56 
     57 </section>
     58 
     59 <!-- /.usage -->
     60 
     61 <section class="notes">
     62 
     63 ## Notes
     64 
     65 -   As components of a [double-double number][double-double-arithmetic], the two [double-precision floating-point numbers][ieee754] `x` and `y` must satisfy 
     66 
     67     <!-- <equation class="equation" label="eq:double_double_inequality" align="center" raw="|y| \leq \frac{1}{2} \operatorname{ulp}(x)" alt="Inequality for the two components of a double-double number."> -->
     68 
     69     <div class="equation" align="center" data-raw-text="|y| \leq \frac{1}{2} \operatorname{ulp}(x)" data-equation="eq:double_double_inequality">
     70         <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/kernel-sin/docs/img/equation_double_double_inequality.svg" alt="Inequality for the two components of a double-double number.">
     71         <br>
     72     </div>
     73 
     74     <!-- </equation> -->
     75 
     76     where `ulp` stands for [units in the last place][ulp].
     77 
     78 </section>
     79 
     80 <!-- /.notes -->
     81 
     82 <section class="examples">
     83 
     84 ## Examples
     85 
     86 <!-- eslint no-undef: "error" -->
     87 
     88 ```javascript
     89 var linspace = require( '@stdlib/array/linspace' );
     90 var PI = require( '@stdlib/constants/float64/pi' );
     91 var kernelSin = require( '@stdlib/math/base/special/kernel-sin' );
     92 
     93 var x = linspace( -PI/4.0, PI/4.0, 100 );
     94 var i;
     95 
     96 for ( i = 0; i < x.length; i++ ) {
     97     console.log( 'kernelSin(%d) = %d', x[ i ], kernelSin( x[ i ], 0.0 ) );
     98 }
     99 ```
    100 
    101 </section>
    102 
    103 <!-- /.examples -->
    104 
    105 <section class="links">
    106 
    107 [sine]: https://en.wikipedia.org/wiki/Sine
    108 
    109 [double-double-arithmetic]: https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
    110 
    111 [ieee754]: https://en.wikipedia.org/wiki/IEEE_floating_point
    112 
    113 [ulp]: https://en.wikipedia.org/wiki/Unit_in_the_last_place
    114 
    115 </section>
    116 
    117 <!-- /.links -->