kernel_betaincinv.js (12813B)
1 /* eslint-disable max-statements, max-lines */ 2 3 /** 4 * @license Apache-2.0 5 * 6 * Copyright (c) 2018 The Stdlib Authors. 7 * 8 * Licensed under the Apache License, Version 2.0 (the "License"); 9 * you may not use this file except in compliance with the License. 10 * You may obtain a copy of the License at 11 * 12 * http://www.apache.org/licenses/LICENSE-2.0 13 * 14 * Unless required by applicable law or agreed to in writing, software 15 * distributed under the License is distributed on an "AS IS" BASIS, 16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 17 * See the License for the specific language governing permissions and 18 * limitations under the License. 19 * 20 * 21 * ## Notice 22 * 23 * The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_62_0/boost/math/special_functions/detail/ibeta_inverse.hpp}. The implementation has been modified for JavaScript. 24 * 25 * ```text 26 * Copyright John Maddock 2006. 27 * Copyright Paul A. Bristow 2007. 28 * 29 * Use, modification and distribution are subject to the 30 * Boost Software License, Version 1.0. (See accompanying file 31 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt) 32 * ``` 33 */ 34 35 'use strict'; 36 37 // MODULES // 38 39 var evalpoly = require( './../../../../base/tools/evalpoly' ); 40 var betainc = require( './../../../../base/special/betainc' ); 41 var expm1 = require( './../../../../base/special/expm1' ); 42 var log1p = require( './../../../../base/special/log1p' ); 43 var asin = require( './../../../../base/special/asin' ); 44 var beta = require( './../../../../base/special/beta' ); 45 var sqrt = require( './../../../../base/special/sqrt' ); 46 var abs = require( './../../../../base/special/abs' ); 47 var exp = require( './../../../../base/special/exp' ); 48 var pow = require( './../../../../base/special/pow' ); 49 var sin = require( './../../../../base/special/sin' ); 50 var max = require( './../../../../base/special/max' ); 51 var min = require( './../../../../base/special/min' ); 52 var ln = require( './../../../../base/special/ln' ); 53 var FLOAT64_MIN_NORM = require( '@stdlib/constants/float64/smallest-normal' ); 54 var HALF_PI = require( '@stdlib/constants/float64/half-pi' ); 55 var EPSILON = require( '@stdlib/constants/float64/eps' ); 56 var findIBetaInvFromTDist = require( './find_ibeta_inv_from_t_dist.js' ); 57 var temme1 = require( './temme1.js' ); 58 var temme2 = require( './temme2.js' ); 59 var temme3 = require( './temme3.js' ); 60 var halleyIterate = require( './halley_iterate.js' ); 61 var ibetaRoots = require( './ibeta_roots.js' ); 62 63 64 // VARIABLES // 65 66 var DIGITS = 32; 67 var MAX_ITERATIONS = 1000; 68 69 // Workspace for the polynomial coefficients: 70 var terms = [ 0.0, 0.0, 0.0, 0.0, 0.0 ]; // WARNING: not thread safe 71 72 73 // MAIN // 74 75 /** 76 * Calculates the inverse of the incomplete beta function. 77 * 78 * @private 79 * @param {PositiveNumber} a - function parameter 80 * @param {PositiveNumber} b - function parameter 81 * @param {Probability} p - function parameter 82 * @param {Probability} q - probability equal to `1 - p` 83 * @returns {Array} two-element array holding function value `y` and `1-y` 84 */ 85 function ibetaInvImp( a, b, p, q ) { 86 var digits; 87 var invert; 88 var lambda; 89 var lower; 90 var theta; 91 var upper; 92 var roots; 93 var maxv; 94 var minv; 95 var bet; 96 var ppa; 97 var tmp; 98 var xs2; 99 var ap1; 100 var bm1; 101 var fs; 102 var lx; 103 var ps; 104 var xg; 105 var xs; 106 var yp; 107 var a2; 108 var a3; 109 var b2; 110 var r; 111 var l; 112 var u; 113 var x; 114 var y; 115 116 // The flag invert is set to true if we swap a for b and p for q, in which case the result has to be subtracted from 1: 117 invert = false; 118 119 // Handle trivial cases first... 120 if ( q === 0.0 ) { 121 return [ 1.0, 0.0 ]; 122 } 123 if ( p === 0.0 ) { 124 return [ 0.0, 1.0 ]; 125 } 126 if ( a === 1.0 ) { 127 if ( b === 1.0 ) { 128 return [ p, 1.0-p ]; 129 } 130 // Change things around so we can handle as b == 1 special case below: 131 tmp = b; 132 b = a; 133 a = tmp; 134 135 tmp = q; 136 q = p; 137 p = tmp; 138 139 invert = true; 140 } 141 // Depending upon which approximation method we use, we may end up calculating either x or y initially (where y = 1-x): 142 x = 0.0; // Set to a safe zero to avoid a 143 144 // For some of the methods we can put tighter bounds on the result than simply [0,1]: 145 lower = 0.0; 146 upper = 1.0; 147 148 // Student's T with b = 0.5 gets handled as a special case, swap around if the arguments are in the "wrong" order: 149 if ( a === 0.5 ) { 150 if ( b === 0.5 ) { 151 x = sin( p*HALF_PI ); 152 x *= x; 153 y = sin( q*HALF_PI ); 154 y *= y; 155 return [ x, y ]; 156 } 157 if ( b > 0.5 ) { 158 tmp = b; 159 b = a; 160 a = tmp; 161 162 tmp = q; 163 q = p; 164 p = tmp; 165 166 invert = !invert; 167 } 168 } 169 // Select calculation method for the initial estimate: 170 if ( b === 0.5 && a >= 0.5 && p !== 1.0 ) { 171 // We have a Student's T distribution: 172 yp = {}; 173 x = findIBetaInvFromTDist( a, p, yp ); 174 y = yp.value; 175 } 176 else if ( b === 1.0 ) { 177 if ( p < q ) { 178 if ( a > 1.0 ) { 179 x = pow( p, 1.0/a ); 180 y = -expm1( ln(p) / a ); 181 } else { 182 x = pow( p, 1.0/a ); 183 y = 1.0 - x; 184 } 185 } else { 186 x = exp( log1p(-q) / a ); 187 y = -expm1( log1p(-q) / a ); 188 } 189 if ( invert ) { 190 tmp = y; 191 y = x; 192 x = tmp; 193 } 194 return [ x, y ]; 195 } 196 else if ( a+b > 5.0 ) { 197 // When a+b is large then we can use one of Prof Temme's asymptotic expansions, begin by swapping things around so that p < 0.5, we do this to avoid cancellations errors when p is large. 198 if ( p > 0.5 ) { 199 tmp = b; 200 b = a; 201 a = tmp; 202 203 tmp = q; 204 q = p; 205 p = tmp; 206 207 invert = !invert; 208 } 209 minv = min( a, b ); 210 maxv = max( a, b ); 211 if ( ( sqrt(minv) > (maxv-minv) ) && minv > 5.0 ) { 212 // When a and b differ by a small amount the curve is quite symmetrical and we can use an error function to approximate the inverse. This is the cheapest of the three Temme expansions, and the calculated value for x will never be much larger than p, so we don't have to worry about cancellation as long as p is small. 213 x = temme1( a, b, p ); 214 y = 1.0 - x; 215 } else { 216 r = a + b; 217 theta = asin( sqrt( a/r ) ); 218 lambda = minv / r; 219 if ( 220 lambda >= 0.2 && 221 lambda <= 0.8 && 222 r >= 10 223 ) { 224 // The second error function case is the next cheapest to use, it breaks down when the result is likely to be very small, if `a+b` is also small, but we can use a cheaper expansion there in any case. As before `x` won't be much larger than `p`, so as long as `p` is small we should be free of cancellation error. 225 ppa = pow( p, 1.0/a ); 226 if ( ppa < 0.0025 && ( a+b ) < 200.0 ) { 227 x = ppa * pow( a*beta( a, b ), 1.0/a ); 228 } else { 229 x = temme2( p, r, theta ); 230 } 231 y = 1.0 - x; 232 } else { 233 // If we get here then a and b are very different in magnitude and we need to use the third of Temme's methods which involves inverting the incomplete gamma. This is much more expensive than the other methods. We also can only use this method when a > b, which can lead to cancellation errors if we really want y (as we will when x is close to 1), so a different expansion is used in that case. 234 if ( a < b ) { 235 tmp = b; 236 b = a; 237 a = tmp; 238 239 tmp = q; 240 q = p; 241 p = tmp; 242 invert = !invert; 243 } 244 // Try and compute the easy way first: 245 bet = 0.0; 246 if ( b < 2.0 ) { 247 bet = beta( a, b ); 248 } 249 if ( bet === 0.0 ) { 250 y = 1.0; 251 } else { 252 y = pow( b*q*bet, 1.0/b ); 253 x = 1.0 - y; 254 } 255 } 256 if ( y > 1.0e-5 ) { 257 x = temme3( a, b, p, q ); 258 y = 1.0 - x; 259 } 260 } 261 } 262 else if ( a < 1.0 && b < 1.0 ) { 263 // Both a and b less than 1, there is a point of inflection at xs: 264 xs = ( 1.0-a ) / ( 2.0-a-b ); 265 266 // Now we need to ensure that we start our iteration from the right side of the inflection point: 267 fs = betainc( xs, a, b ) - p; 268 if ( abs(fs)/p < EPSILON*3.0 ) { 269 // The result is at the point of inflection, best just return it: 270 if ( invert ) { 271 return [ 1.0-xs, xs ]; 272 } 273 return [ xs, 1.0-xs ]; 274 } 275 if ( fs < 0.0 ) { 276 tmp = b; 277 b = a; 278 a = tmp; 279 280 tmp = q; 281 q = p; 282 p = tmp; 283 284 invert = !invert; 285 xs = 1.0 - xs; 286 } 287 xg = pow( a*p*beta( a, b ), 1.0/a ); 288 x = xg / ( 1.0+xg ); 289 y = 1.0 / ( 1.0+xg ); 290 291 // And finally we know that our result is below the inflection point, so set an upper limit on our search: 292 if ( x > xs ) { 293 x = xs; 294 } 295 upper = xs; 296 } 297 else if ( a > 1.0 && b > 1.0 ) { 298 // Small a and b, both greater than 1, there is a point of inflection at xs, and it's complement is xs2, we must always start our iteration from the right side of the point of inflection. 299 xs = ( a-1.0 ) / ( a+b-2.0 ); 300 xs2 = ( b-1.0 ) / ( a+b-2.0 ); 301 ps = betainc( xs, a, b ) - p; 302 303 if ( ps < 0.0 ) { 304 tmp = b; 305 b = a; 306 a = tmp; 307 308 tmp = q; 309 q = p; 310 p = tmp; 311 312 tmp = xs2; 313 xs2 = xs; 314 xs = tmp; 315 316 invert = !invert; 317 } 318 // Estimate x and y, using expm1 to get a good estimate for y when it's very small: 319 lx = ln( p*a*beta( a, b ) ) / a; 320 x = exp( lx ); 321 y = ( x < 0.9 ) ? 1.0-x : -expm1(lx); 322 323 if ( b < a && x < 0.2 ) { 324 // Under a limited range of circumstances we can improve our estimate for x... 325 ap1 = a - 1.0; 326 bm1 = b - 1.0; 327 a2 = a * a; 328 a3 = a * a2; 329 b2 = b * b; 330 terms[ 0 ] = 0.0; 331 terms[ 1 ] = 1.0; 332 terms[ 2 ] = bm1 / ap1; 333 ap1 *= ap1; 334 terms[ 3 ] = bm1 * (3.0*a*b + 5.0*b + a2 - a - 4.0) / (2.0 * (a+2.0) * ap1); // eslint-disable-line max-len, no-mixed-operators 335 ap1 *= (a + 1.0); 336 terms[ 4 ] = bm1 * (33.0*a*b2 + 31.0*b2 + 8.0*a2*b2 - 30.0*a*b - 47.0*b + 11.0*a2*b + 6.0*a3*b + 18.0 + 4.0*a - a3 + a2*a2 - 10.0*a2); // eslint-disable-line max-len, no-mixed-operators 337 terms[ 4 ] /= (3.0 * (a+3.0) * (a+2.0) * ap1); 338 x = evalpoly( terms, x ); 339 } 340 // Know that result is below the inflection point, so set an upper limit on search... 341 if ( x > xs ) { 342 x = xs; 343 } 344 upper = xs; 345 } else { 346 // Case: ( a <= 1 ) != ( b <= 1 ). If all else fails we get here, only one of a and b is above 1, and a+b is small. Start by swapping things around so that we have a concave curve with b > a and no points of inflection in [0,1]. As long as we expect x to be small then we can use the simple (and cheap) power term to estimate x, but when we expect x to be large then this greatly underestimates x and leaves us trying to iterate "round the corner" which may take almost forever. We could use Temme's inverse gamma function case in that case, this works really rather well (albeit expensively) even though strictly speaking we're outside it's defined range. However it's expensive to compute, and an alternative approach which models the curve as a distorted quarter circle is much cheaper to compute, and still keeps the number of iterations required down to a reasonable level. With thanks to Prof. Temme for this suggestion. 347 if ( b < a ) { 348 tmp = b; 349 b = a; 350 a = tmp; 351 352 tmp = q; 353 q = p; 354 p = tmp; 355 invert = !invert; 356 } 357 if ( pow( p, 1.0/a ) < 0.5 ) { 358 x = pow( p*a*beta( a, b ), 1.0/a ); 359 if ( x === 0.0 ) { 360 x = FLOAT64_MIN_NORM; 361 } 362 y = 1.0 - x; 363 } 364 // Case: pow(q, 1/b) < 0.1 365 else { 366 // Model a distorted quarter circle: 367 y = pow( 1.0-pow( p, b*beta( a, b ) ), 1.0/b ); 368 if ( y === 0 ) { 369 y = FLOAT64_MIN_NORM; 370 } 371 x = 1.0 - y; 372 } 373 } 374 // Now we have a guess for x (and for y) we can set things up for iteration. If x > 0.5 it pays to swap things round: 375 if ( x > 0.5 ) { 376 tmp = b; 377 b = a; 378 a = tmp; 379 380 tmp = q; 381 q = p; 382 p = tmp; 383 384 tmp = y; 385 y = x; 386 x = tmp; 387 388 invert = !invert; 389 l = 1.0 - upper; 390 u = 1.0 - lower; 391 lower = l; 392 upper = u; 393 } 394 // Lower bound for our search: We're not interested in denormalized answers as these tend to take up lots of iterations, given that we can't get accurate derivatives in this area (they tend to be infinite). 395 if ( lower === 0 ) { 396 if ( invert ) { 397 // We're not interested in answers smaller than machine epsilon: 398 lower = EPSILON; 399 if ( x < lower ) { 400 x = lower; 401 } 402 } else { 403 lower = FLOAT64_MIN_NORM; 404 } 405 if ( x < lower ) { 406 x = lower; 407 } 408 } 409 // Figure out how many digits to iterate towards: 410 digits = DIGITS; 411 if ( x < 1.0e-50 && ( a < 1.0 || b < 1.0 ) ) { 412 // If we're in a region where the first derivative is very large, then we have to take care that the root-finder doesn't terminate prematurely. We'll bump the precision up to avoid this, but we have to take care not to set the precision too high or the last few iterations will just thrash around and convergence may be slow in this case. Try 3/4 of machine epsilon: 413 digits *= 3; 414 digits /= 2; 415 } 416 // Now iterate, we can use either p or q as the target here depending on which is smaller: 417 roots = ibetaRoots( a, b, ( (p < q) ? p : q ), p >= q ); 418 x = halleyIterate( roots, x, lower, upper, digits, MAX_ITERATIONS ); 419 420 // Tidy up, if we "lower" was too high then zero is the best answer we have: 421 if ( x === lower ) { 422 x = 0.0; 423 } 424 if ( invert ) { 425 return [ 1.0-x, x ]; 426 } 427 return [ x, 1.0-x ]; 428 } 429 430 431 // EXPORTS // 432 433 module.exports= ibetaInvImp;