binomial_ccdf.js (2941B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 * 18 * 19 * ## Notice 20 * 21 * The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_61_0/boost/math/special_functions/beta.hpp}. The implementation has been modified for JavaScript. 22 * 23 * ```text 24 * (C) Copyright John Maddock 2006. 25 * 26 * Use, modification and distribution are subject to the 27 * Boost Software License, Version 1.0. (See accompanying file 28 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt) 29 * ``` 30 */ 31 32 'use strict'; 33 34 // MODULES // 35 36 var binomcoef = require( './../../../../base/special/binomcoef' ); 37 var floor = require( './../../../../base/special/floor' ); 38 var pow = require( './../../../../base/special/pow' ); 39 var MIN_VALUE = require( '@stdlib/constants/float64/smallest-normal' ); 40 41 42 // MAIN // 43 44 /** 45 * For integer arguments we can relate the incomplete beta to the complement of the binomial distribution cdf and use this finite sum. 46 * 47 * @private 48 * @param {NonNegativeInteger} n - number of trials 49 * @param {NonNegativeInteger} k - function input 50 * @param {Probability} x - function input 51 * @param {Probability} y - probability equal to `1-x` 52 * @returns {number} sum 53 */ 54 function binomialCCDF( n, k, x, y ) { 55 var startTerm; 56 var result; 57 var start; 58 var term; 59 var i; 60 61 result = pow( x, n ); 62 if ( result > MIN_VALUE ) { 63 term = result; 64 for ( i = floor( n - 1 ); i > k; i-- ) { 65 term *= ((i + 1) * y) / ((n - i) * x); 66 result += term; 67 } 68 } else { 69 // First term underflows so we need to start at the mode of the distribution and work outwards: 70 start = floor( n * x ); 71 if ( start <= k + 1 ) { 72 start = floor( k + 2 ); 73 } 74 result = pow( x, start ) * pow( y, n - start ); 75 result *= binomcoef( floor(n), floor(start) ); 76 if ( result === 0.0 ) { 77 // OK, starting slightly above the mode didn't work, we'll have to sum the terms the old fashioned way: 78 for ( i = start - 1; i > k; i-- ) { 79 result += pow( x, i ) * pow( y, n - i ); 80 result *= binomcoef( floor(n), floor(i) ); 81 } 82 } else { 83 term = result; 84 startTerm = result; 85 for ( i = start - 1; i > k; i-- ) { 86 term *= ((i + 1) * y) / ((n - i) * x); 87 result += term; 88 } 89 term = startTerm; 90 for ( i = start + 1; i <= n; i++ ) { 91 term *= (n - i + 1) * x / (i * y); 92 result += term; 93 } 94 } 95 } 96 return result; 97 } 98 99 100 // EXPORTS // 101 102 module.exports = binomialCCDF;