time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

binary_gcd.js (2129B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 /**
     22 * Computes the greatest common divisor (gcd) using the binary GCD algorithm.
     23 *
     24 * ## References
     25 *
     26 * -   Stein, Josef. 1967. "Computational problems associated with Racah algebra." _Journal of Computational Physics_ 1 (3): 397–405. doi:[10.1016/0021-9991(67)90047-2][@stein:1967].
     27 *
     28 * [@stein:1967]: https://doi.org/10.1016/0021-9991(67)90047-2
     29 *
     30 * @private
     31 * @param {integer} a - integer
     32 * @param {integer} b - integer
     33 * @returns {integer} greatest common divisor
     34 *
     35 * @example
     36 * var v = gcd( 1.2676506002282294e+30, 9007199254740992 );
     37 * // returns 9007199254740992
     38 */
     39 function gcd( a, b ) {
     40 	var k = 1;
     41 	var t;
     42 
     43 	// Simple cases:
     44 	if ( a === 0 ) {
     45 		return b;
     46 	}
     47 	if ( b === 0 ) {
     48 		return a;
     49 	}
     50 	// Reduce `a` and/or `b` to odd numbers and keep track of the greatest power of 2 dividing both `a` and `b`...
     51 	while ( a%2 === 0 && b%2 === 0 ) {
     52 		a /= 2; // right shift
     53 		b /= 2; // right shift
     54 		k *= 2; // left shift
     55 	}
     56 	// Reduce `a` to an odd number...
     57 	while ( a%2 === 0 ) {
     58 		a /= 2; // right shift
     59 	}
     60 	// Henceforth, `a` is always odd...
     61 	while ( b ) {
     62 		// Remove all factors of 2 in `b`, as they are not common...
     63 		while ( b%2 === 0 ) {
     64 			b /= 2; // right shift
     65 		}
     66 		// `a` and `b` are both odd. Swap values such that `b` is the larger of the two values, and then set `b` to the difference (which is even)...
     67 		if ( a > b ) {
     68 			t = b;
     69 			b = a;
     70 			a = t;
     71 		}
     72 		b -= a; // b=0 iff b=a
     73 	}
     74 	// Restore common factors of 2...
     75 	return k * a;
     76 }
     77 
     78 
     79 // EXPORTS //
     80 
     81 module.exports = gcd;