higher_newton.js (3087B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var logger = require( 'debug' ); 24 var gammainc = require( './../../../../base/special/gammainc' ); 25 var abs = require( './../../../../base/special/abs' ); 26 var exp = require( './../../../../base/special/exp' ); 27 var ln = require( './../../../../base/special/ln' ); 28 var MAX_FLOAT32 = require( '@stdlib/constants/float32/max' ); 29 30 31 // VARIABLES // 32 33 var debug = logger( 'gammaincinv:higher_newton' ); 34 35 36 // MAIN // 37 38 /** 39 * Implementation of the high order Newton-like method. 40 * 41 * @private 42 * @param {number} x0 - initial value 43 * @param {number} a - scale parameter 44 * @param {number} m - indicator 45 * @param {Probability} p - probability value 46 * @param {Probability} q - probability value 47 * @param {number} lgama - logarithm of scale parameter 48 * @param {number} invfp - one over `fp` 49 * @param {boolean} pcase - boolean indicating whether p < 0.5 50 * @returns {number} function value of the inverse 51 */ 52 function higherNewton( x0, a, m, p, q, lgama, invfp, pcase ) { 53 var dlnr; 54 var xini; 55 var ck0; 56 var ck1; 57 var ck2; 58 var a2; 59 var x2; 60 var px; 61 var qx; 62 var xr; 63 var t; 64 var n; 65 var r; 66 var x; 67 68 x = x0; 69 t = 1; 70 n = 1; 71 a2 = a * a; 72 xini = x0; 73 do { 74 x = x0; 75 x2 = x * x; 76 if ( m === 0 ) { 77 dlnr = ( ( 1.0-a ) * ln( x ) ) + x + lgama; 78 if ( dlnr > ln( MAX_FLOAT32 ) ) { 79 debug( 'Warning: overflow problems in one or more steps of the computation. The initial approximation to the root is returned.' ); 80 return xini; 81 } 82 r = exp( dlnr ); 83 } else { 84 r = -invfp * x; 85 } 86 if ( pcase ) { 87 // Call: gammainc( x, s[, regularized = true ][, upper = false ] ) 88 px = gammainc( x, a, true, false ); 89 ck0 = -r * ( px - p ); 90 } else { 91 // Call: gammainc( x, s[, regularized = true ][, upper = true ] ) 92 qx = gammainc( x, a, true, true ); 93 ck0 = r * ( qx - q ); 94 } 95 r = ck0; 96 if ( ( p > 1e-120 ) || ( n > 1 ) ) { 97 ck1 = 0.5 * ( x - a + 1.0 ) / x; 98 ck2 = ( (2*x2) - (4*x*a) + (4*x) + (2*a2) - (3*a) + 1 ) / x2; 99 ck2 /= 6.0; 100 x0 = x + ( r * ( 1.0 + ( r * ( ck1 + (r*ck2) ) ) ) ); 101 } else { 102 x0 = x + r; 103 } 104 t = abs( ( x/x0 ) - 1.0 ); 105 n += 1; 106 x = x0; 107 if ( x < 0 ) { 108 x = xini; 109 n = 100; 110 } 111 } while ( ( ( t > 2e-14 ) && ( n < 35 ) ) ); 112 if ( ( t > 2e-14 ) || ( n > 99 ) ) { 113 debug( 'Warning: the number of iterations in the Newton method reached the upper limit N=35. The last value obtained for the root is given as output.' ); 114 } 115 xr = x || 0; 116 return xr; 117 } 118 119 120 // EXPORTS // 121 122 module.exports = higherNewton;