README.md (3026B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Gamma Lanczos Sum 22 23 > Calculate the Lanczos sum for the approximation of the [gamma function][gamma-function]. 24 25 <section class="intro"> 26 27 The [Lanczos approximation][lanczos-approximation] for the [gamma function][gamma-function] can be written in partial fraction form as follows: 28 29 <!-- <equation class="equation" label="eq:lanczos_approximation" align="center" raw="\Gamma ( n ) = \frac{(n+g-0.5)^{n-0.5}}{e^{n+g-0.5}} L_g(n)" alt="Lanczos approximation for gamma function."> --> 30 31 <div class="equation" align="center" data-raw-text="\Gamma ( n ) = \frac{(n+g-0.5)^{n-0.5}}{e^{n+g-0.5}} L_g(n)" data-equation="eq:lanczos_approximation"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/gamma-lanczos-sum/docs/img/equation_lanczos_approximation.svg" alt="Lanczos approximation for gamma function."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `g` is an [arbitrary constant][@stdlib/constants/float64/gamma-lanczos-g] and `L_g(n)` is the Lanczos sum. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var gammaLanczosSum = require( '@stdlib/math/base/special/gamma-lanczos-sum' ); 50 ``` 51 52 #### gammaLanczosSum( x ) 53 54 Calculates the Lanczos sum for the approximation of the [gamma function][gamma-function]. 55 56 ```javascript 57 var v = gammaLanczosSum( 4.0 ); 58 // returns ~950.366 59 60 v = gammaLanczosSum( -1.5 ); 61 // returns ~1373366.245 62 63 v = gammaLanczosSum( -0.5 ); 64 // returns ~-699841.735 65 66 v = gammaLanczosSum( 0.5 ); 67 // returns ~96074.186 68 69 v = gammaLanczosSum( 0.0 ); 70 // returns Infinity 71 72 v = gammaLanczosSum( NaN ); 73 // returns NaN 74 ``` 75 76 </section> 77 78 <!-- /.usage --> 79 80 <section class="examples"> 81 82 ## Examples 83 84 <!-- eslint no-undef: "error" --> 85 86 ```javascript 87 var linspace = require( '@stdlib/array/linspace' ); 88 var gammaLanczosSum = require( '@stdlib/math/base/special/gamma-lanczos-sum' ); 89 90 var x = linspace( -10.0, 10.0, 100 ); 91 var v; 92 var i; 93 94 for ( i = 0; i < x.length; i++ ) { 95 v = gammaLanczosSum( x[ i ] ); 96 console.log( 'x: %d, f(x): %d', x[ i ], v ); 97 } 98 ``` 99 100 </section> 101 102 <!-- /.examples --> 103 104 <section class="links"> 105 106 [@stdlib/constants/float64/gamma-lanczos-g]: https://www.npmjs.com/package/@stdlib/constants-float64-gamma-lanczos-g 107 108 [gamma-function]: https://en.wikipedia.org/wiki/Gamma_function 109 110 [lanczos-approximation]: https://en.wikipedia.org/wiki/Lanczos_approximation 111 112 </section> 113 114 <!-- /.links -->