time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

fresnels.js (3575B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 *
     18 *
     19 * ## Notice
     20 *
     21 * The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified for JavaScript.
     22 *
     23 * ```text
     24 * Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
     25 *
     26 * Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee.
     27 *
     28 * Stephen L. Moshier
     29 * moshier@na-net.ornl.gov
     30 * ```
     31 */
     32 
     33 'use strict';
     34 
     35 // MODULES //
     36 
     37 var sincos = require( './../../../../base/special/sincos' );
     38 var abs = require( './../../../../base/special/abs' );
     39 var HALF_PI = require( '@stdlib/constants/float64/half-pi' );
     40 var PI = require( '@stdlib/constants/float64/pi' );
     41 var polyS = require( './rational_psqs.js' );
     42 var polyF = require( './rational_pfqf.js' );
     43 var polyG = require( './rational_pgqg.js' );
     44 
     45 
     46 // VARIABLES //
     47 
     48 // Array for storing sincos evaluation:
     49 var sc = [ 0.0, 0.0 ]; // WARNING: not thread safe
     50 
     51 
     52 // MAIN //
     53 
     54 /**
     55 * Computes the Fresnel integral S(x).
     56 *
     57 * ## Method
     58 *
     59 * Evaluates the Fresnel integral
     60 *
     61 * ```tex
     62 * \operatorname{S}(x) = \int_0^x \sin\left(\frac{\pi}{2} t^2\right)\,\mathrm{d}t
     63 * ```
     64 *
     65 * The integral is evaluated by a power series for \\( x < 1 \\). For \\( x >= 1 \\) auxiliary functions \\( f(x) \\) and \\( g(x) \\) are employed such that
     66 *
     67 * ```tex
     68 * \operatorname{S}(x) = \frac{1}{2} - f(x) \cos\left( \frac{\pi}{2} x^2 \right) - g(x) \sin\left( \frac{\pi}{2} x^2 \right).
     69 * ```
     70 *
     71 * ## Notes
     72 *
     73 * -   Relative error on test interval \\( \[0,10\] \\):
     74 *
     75 *     | arithmetic | function | # trials | peak    | rms     |
     76 *     |:----------:|:--------:|:--------:|:--------:|:-------:|
     77 *     | IEEE       | S(x)     | 10000    | 2.0e-15 | 3.2e-16 |
     78 *
     79 *
     80 * @param {number} x - input value
     81 * @returns {number} S(x)
     82 *
     83 * @example
     84 * var v = fresnels( 0.0 );
     85 * // returns 0.0
     86 *
     87 * @example
     88 * var v = fresnels( 1.0 );
     89 * // returns ~0.438
     90 *
     91 * @example
     92 * var v = fresnels( Infinity );
     93 * // returns ~0.5
     94 *
     95 * @example
     96 * var v = fresnels( -Infinity );
     97 * // returns ~-0.5
     98 *
     99 * @example
    100 * var v = fresnels( NaN );
    101 * // returns NaN
    102 */
    103 function fresnels( x ) {
    104 	var x2;
    105 	var xa;
    106 	var S;
    107 	var f;
    108 	var g;
    109 	var t;
    110 	var u;
    111 
    112 	xa = abs( x );
    113 	x2 = xa * xa;
    114 	if ( x2 < 2.5625 ) {
    115 		t = x2 * x2;
    116 		S = xa * x2 * polyS( t );
    117 	} else if ( xa > 36974.0 ) {
    118 		S = 0.5;
    119 	} else {
    120 		// Asymptotic power series auxiliary functions for large arguments...
    121 		x2 = xa * xa;
    122 		t = PI * x2;
    123 		u = 1.0 / (t * t);
    124 		t = 1.0 / t;
    125 		f = 1.0 - ( u * polyF( u ) );
    126 		g = t * polyG( u );
    127 		t = HALF_PI * x2;
    128 		sincos( sc, t );
    129 		t = PI * xa;
    130 		S = 0.5 - ( ( (f*sc[1]) + (g*sc[0]) ) / t );
    131 	}
    132 	if ( x < 0.0 ) {
    133 		S = -S;
    134 	}
    135 	return S;
    136 }
    137 
    138 
    139 // EXPORTS //
    140 
    141 module.exports = fresnels;