time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

floorn.js (5815B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( './../../../../base/assert/is-nan' );
     24 var isInfinite = require( './../../../../base/assert/is-infinite' );
     25 var pow = require( './../../../../base/special/pow' );
     26 var abs = require( './../../../../base/special/abs' );
     27 var floor = require( './../../../../base/special/floor' );
     28 var MAX_SAFE_INTEGER = require( '@stdlib/constants/float64/max-safe-integer' );
     29 var MAX_EXP = require( '@stdlib/constants/float64/max-base10-exponent' );
     30 var MIN_EXP = require( '@stdlib/constants/float64/min-base10-exponent' );
     31 var MIN_EXP_SUBNORMAL = require( '@stdlib/constants/float64/min-base10-exponent-subnormal' );
     32 var NINF = require( '@stdlib/constants/float64/ninf' );
     33 
     34 
     35 // VARIABLES //
     36 
     37 var MAX_INT = MAX_SAFE_INTEGER + 1;
     38 var HUGE = 1.0e+308;
     39 
     40 
     41 // MAIN //
     42 
     43 /**
     44 * Rounds a numeric value to the nearest multiple of \\(10^n\\) toward negative infinity.
     45 *
     46 * ## Method
     47 *
     48 * 1.  If \\(|x| <= 2^{53}\\) and \\(|n| <= 308\\), we can use the formula
     49 *
     50 *     ```tex
     51 *     \operatorname{floorn}(x,n) = \frac{\operatorname{floor}(x \cdot 10^{-n})}{10^{-n}}
     52 *     ```
     53 *
     54 *     which shifts the decimal to the nearest multiple of \\(10^n\\), performs a standard \\(\mathrm{floor}\\) operation, and then shifts the decimal to its original position.
     55 *
     56 *     <!-- <note> -->
     57 *
     58 *     If \\(x \cdot 10^{-n}\\) overflows, \\(x\\) lacks a sufficient number of decimal digits to have any effect when rounding. Accordingly, the rounded value is \\(x\\).
     59 *
     60 *     <!-- </note> -->
     61 *
     62 *     <!-- <note> -->
     63 *
     64 *     Note that rescaling \\(x\\) can result in unexpected behavior. For instance, the result of \\(\operatorname{floorn}(-0.2-0.1,-16)\\) is \\(-0.3000000000000001\\) and not \\(-0.3\\). While possibly unexpected, this is not a bug. The behavior stems from the fact that most decimal fractions cannot be exactly represented as floating-point numbers. And further, rescaling can lead to slightly different fractional values, which, in turn, affects the result of \\(\mathrm{floor}\\).
     65 *
     66 *     <!-- </note> -->
     67 *
     68 * 2.  If \\(n > 308\\), we recognize that the maximum absolute double-precision floating-point number is \\(\approx 1.8\mbox{e}308\\) and, thus, the result of rounding any possible negative finite number \\(x\\) to the nearest \\(10^n\\) is \\(-\infty\\) and any possible positive finite number \\(x\\) is \\(+0\\). To ensure consistent behavior with \\(\operatorname{floor}(x)\\), if \\(x > 0\\), the sign of \\(x\\) is preserved.
     69 *
     70 * 3.  If \\(n < -324\\), \\(n\\) exceeds the maximum number of possible decimal places (such as with subnormal numbers), and, thus, the rounded value is \\(x\\).
     71 *
     72 * 4.  If \\(x > 2^{53}\\), \\(x\\) is **always** an integer (i.e., \\(x\\) has no decimal digits). If \\(n <= 0\\), the rounded value is \\(x\\).
     73 *
     74 * 5.  If \\(n < -308\\), we let \\(m = n + 308\\) and modify the above formula to avoid overflow.
     75 *
     76 *     ```tex
     77 *     \operatorname{floorn}(x,n) = \frac{\biggl(\frac{\operatorname{floor}( (x \cdot 10^{308}) 10^{-m})}{10^{308}}\biggr)}{10^{-m}}
     78 *     ```
     79 *
     80 *     If overflow occurs, the rounded value is \\(x\\).
     81 *
     82 *
     83 * ## Special Cases
     84 *
     85 * ```tex
     86 * \begin{align*}
     87 * \operatorname{floorn}(\mathrm{NaN}, n) &= \mathrm{NaN} \\
     88 * \operatorname{floorn}(x, \mathrm{NaN}) &= \mathrm{NaN} \\
     89 * \operatorname{floorn}(x, \pm\infty) &= \mathrm{NaN} \\
     90 * \operatorname{floorn}(\pm\infty, n) &= \pm\infty \\
     91 * \operatorname{floorn}(\pm 0, n) &= \pm 0
     92 * \end{align*}
     93 * ```
     94 *
     95 *
     96 * @param {number} x - input value
     97 * @param {integer} n - integer power of 10
     98 * @returns {number} rounded value
     99 *
    100 * @example
    101 * // Round a value to 4 decimal places:
    102 * var v = floorn( 3.141592653589793, -4 );
    103 * // returns 3.1415
    104 *
    105 * @example
    106 * // If n = 0, `floorn` behaves like `floor`:
    107 * var v = floorn( 3.141592653589793, 0 );
    108 * // returns 3.0
    109 *
    110 * @example
    111 * // Round a value to the nearest thousand:
    112 * var v = floorn( 12368.0, 3 );
    113 * // returns 12000.0
    114 */
    115 function floorn( x, n ) {
    116 	var s;
    117 	var y;
    118 	if (
    119 		isnan( x ) ||
    120 		isnan( n ) ||
    121 		isInfinite( n )
    122 	) {
    123 		return NaN;
    124 	}
    125 	if (
    126 		// Handle infinities...
    127 		isInfinite( x ) ||
    128 
    129 		// Handle +-0...
    130 		x === 0.0 ||
    131 
    132 		// If `n` exceeds the maximum number of feasible decimal places (such as with subnormal numbers), nothing to round...
    133 		n < MIN_EXP_SUBNORMAL ||
    134 
    135 		// If `|x|` is large enough, no decimals to round...
    136 		( abs( x ) > MAX_INT && n <= 0 )
    137 	) {
    138 		return x;
    139 	}
    140 	// The maximum absolute double is ~1.8e308. Accordingly, any possible positive finite `x` rounded to the nearest >=10^309 is infinity and any negative finite `x` is zero.
    141 	if ( n > MAX_EXP ) {
    142 		if ( x >= 0.0 ) {
    143 			return 0.0; // preserve the sign (same behavior as floor)
    144 		}
    145 		return NINF;
    146 	}
    147 	// If we overflow, return `x`, as the number of digits to the right of the decimal is too small (i.e., `x` is too large / lacks sufficient fractional precision) for there to be any effect when rounding...
    148 	if ( n < MIN_EXP ) {
    149 		s = pow( 10.0, -(n + MAX_EXP) );
    150 		y = (x*HUGE) * s; // order of operation matters!
    151 		if ( isInfinite( y ) ) {
    152 			return x;
    153 		}
    154 		return ( floor(y)/HUGE ) / s;
    155 	}
    156 	s = pow( 10.0, -n );
    157 	y = x * s;
    158 	if ( isInfinite( y ) ) {
    159 		return x;
    160 	}
    161 	return floor( y ) / s;
    162 }
    163 
    164 
    165 // EXPORTS //
    166 
    167 module.exports = floorn;