time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (2637B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2019 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # expit
     22 
     23 > Compute the [standard logistic][logistic-function] function.
     24 
     25 <section class="intro">
     26 
     27 The [standard logistic][logistic-function] function, also called the expit function, inverse logit, or sigmoid function, is defined as the [logistic][logistic-function] function with parameters (`k = 1`, `x0 = 0`, `L = 1`).
     28 
     29 <!-- <equation class="equation" label="eq:expit_function" align="center" raw="\begin{aligned}\operatorname{expit}(x) &= \frac{1}{1+e^{-x}} \\ &= \frac{e^{x}}{e^{x}+1} \\ &= \frac{1}{2} + \frac{1}{2}\tanh\frac{x}{2} \end{aligned}" alt="Standard logistic function."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\begin{aligned}\operatorname{expit}(x) &amp;= \frac{1}{1+e^{-x}} \\ &amp;= \frac{e^{x}}{e^{x}+1} \\ &amp;= \frac{1}{2} + \frac{1}{2}\tanh\frac{x}{2} \end{aligned}" data-equation="eq:expit_function">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@011d8b8e35ceb466ad31f5484e176ccaeaa087a2/lib/node_modules/@stdlib/math/base/special/expit/docs/img/equation_expit_function.svg" alt="Standard logistic function.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var expit = require( '@stdlib/math/base/special/expit' );
     48 ```
     49 
     50 #### expit( x )
     51 
     52 Computes the [standard logistic][logistic-function] function.
     53 
     54 ```javascript
     55 var v = expit( 0.0 );
     56 // returns ~0.5
     57 
     58 v = expit( 1.0 );
     59 // returns ~0.731
     60 
     61 v = expit( -1.0 );
     62 // returns ~0.269
     63 
     64 v = expit( Infinity );
     65 // returns 1.0
     66 
     67 v = expit( NaN );
     68 // returns NaN
     69 ```
     70 
     71 </section>
     72 
     73 <!-- /.usage -->
     74 
     75 <section class="examples">
     76 
     77 ## Examples
     78 
     79 <!-- eslint no-undef: "error" -->
     80 
     81 ```javascript
     82 var randu = require( '@stdlib/random/base/randu' );
     83 var expit = require( '@stdlib/math/base/special/expit' );
     84 
     85 var x;
     86 var i;
     87 
     88 for ( i = 0; i < 100; i++ ) {
     89     x = randu();
     90     console.log( 'expit(%d) = %d', x, expit( x ) );
     91 }
     92 ```
     93 
     94 </section>
     95 
     96 <!-- /.examples -->
     97 
     98 <section class="links">
     99 
    100 [logistic-function]: https://en.wikipedia.org/wiki/Logistic_function
    101 
    102 </section>
    103 
    104 <!-- /.links -->