time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

expmulti.js (1827B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 *
     18 *
     19 * ## Notice
     20 *
     21 * The following copyright, license, and long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/e_exp.c}. The implementation follows the original, but has been modified for JavaScript.
     22 *
     23 * ```text
     24 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
     25 *
     26 * Developed at SunPro, a Sun Microsystems, Inc. business.
     27 * Permission to use, copy, modify, and distribute this
     28 * software is freely granted, provided that this notice
     29 * is preserved.
     30 * ```
     31 */
     32 
     33 'use strict';
     34 
     35 // MODULES //
     36 
     37 var ldexp = require( './../../../../base/special/ldexp' );
     38 var polyvalP = require( './polyval_p.js' );
     39 
     40 
     41 // MAIN //
     42 
     43 /**
     44 * Computes \\(e^{r} 2^k\\) where \\(r = \mathrm{hi} - \mathrm{lo}\\) and \\(|r| \leq \ln(2)/2\\).
     45 *
     46 * @private
     47 * @param {number} hi - upper bound
     48 * @param {number} lo - lower bound
     49 * @param {integer} k - power of 2
     50 * @returns {number} function value
     51 */
     52 function expmulti( hi, lo, k ) {
     53 	var r;
     54 	var t;
     55 	var c;
     56 	var y;
     57 
     58 	r = hi - lo;
     59 	t = r * r;
     60 	c = r - ( t*polyvalP( t ) );
     61 	y = 1.0 - ( lo - ( (r*c)/(2.0-c) ) - hi);
     62 
     63 	return ldexp( y, k );
     64 }
     65 
     66 
     67 // EXPORTS //
     68 
     69 module.exports = expmulti;