README.md (3965B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Dirichlet Eta Function 22 23 > [Dirichlet eta][eta-function] function. 24 25 <section class="intro"> 26 27 The [Dirichlet eta][eta-function] function is defined by the [Dirichlet series][dirichlet-series] 28 29 <!-- <equation class="equation" label="eq:dirichlet_eta_function" align="center" raw="\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots" alt="Dirichlet eta function"> --> 30 31 <div class="equation" align="center" data-raw-text="\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots" data-equation="eq:dirichlet_eta_function"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/math/base/special/dirichlet-eta/docs/img/equation_dirichlet_eta_function.svg" alt="Dirichlet eta function"> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `s` is a complex variable equal to `σ + ti`. The series is convergent for all complex numbers having a real part greater than `0`. 39 40 Note that the [Dirichlet eta][eta-function] function is also known as the **alternating zeta function** and denoted `ζ*(s)`. The series is an alternating sum corresponding to the Dirichlet series expansion of the [Riemann zeta][@stdlib/math/base/special/riemann-zeta] function. Accordingly, the following relation holds: 41 42 <!-- <equation class="equation" label="eq:dirichlet_riemann_relation" align="center" raw="\eta(s) = (1-2^{1-s})\zeta(s)" alt="Dirichlet-Riemann zeta relation"> --> 43 44 <div class="equation" align="center" data-raw-text="\eta(s) = (1-2^{1-s})\zeta(s)" data-equation="eq:dirichlet_riemann_relation"> 45 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/dirichlet-eta/docs/img/equation_dirichlet_riemann_relation.svg" alt="Dirichlet-Riemann zeta relation"> 46 <br> 47 </div> 48 49 <!-- </equation> --> 50 51 where `ζ(s)` is the [Riemann zeta][@stdlib/math/base/special/riemann-zeta] function. 52 53 </section> 54 55 <!-- /.intro --> 56 57 <section class="usage"> 58 59 ## Usage 60 61 ```javascript 62 var eta = require( '@stdlib/math/base/special/dirichlet-eta' ); 63 ``` 64 65 #### eta( s ) 66 67 Evaluates the [Dirichlet eta][eta-function] function as a function of a real variable `s`. 68 69 ```javascript 70 var v = eta( 0.0 ); // Abel sum of 1-1+1-1+... 71 // returns 0.5 72 73 v = eta( -1.0 ); // Abel sum of 1-2+3-4+... 74 // returns 0.25 75 76 v = eta( 1.0 ); // alternating harmonic series => ln(2) 77 // returns 0.6931471805599453 78 79 v = eta( 3.14 ); 80 // returns ~0.9096 81 82 v = eta( NaN ); 83 // returns NaN 84 ``` 85 86 </section> 87 88 <!-- /.usage --> 89 90 <section class="examples"> 91 92 ## Examples 93 94 <!-- eslint no-undef: "error" --> 95 96 ```javascript 97 var linspace = require( '@stdlib/array/linspace' ); 98 var eta = require( '@stdlib/math/base/special/dirichlet-eta' ); 99 100 var s = linspace( -50.0, 50.0, 200 ); 101 var v; 102 var i; 103 104 for ( i = 0; i < s.length; i++ ) { 105 v = eta( s[ i ] ); 106 console.log( 's: %d, η(s): %d', s[ i ], v ); 107 } 108 ``` 109 110 </section> 111 112 <!-- /.examples --> 113 114 <section class="links"> 115 116 [eta-function]: https://en.wikipedia.org/wiki/Dirichlet_eta_function 117 118 [dirichlet-series]: https://en.wikipedia.org/wiki/Dirichlet_series 119 120 [@stdlib/math/base/special/riemann-zeta]: https://www.npmjs.com/package/@stdlib/math/tree/main/base/special/riemann-zeta 121 122 </section> 123 124 <!-- /.links -->