time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

digamma.js (5134B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 *
     18 *
     19 * ## Notice
     20 *
     21 * The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_gamma/digamma.html}. The implementation follows the original but has been modified for JavaScript.
     22 *
     23 * ```text
     24 * (C) Copyright John Maddock 2006.
     25 *
     26 * Use, modification and distribution are subject to the
     27 * Boost Software License, Version 1.0. (See accompanying file
     28 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
     29 * ```
     30 */
     31 
     32 'use strict';
     33 
     34 // MODULES //
     35 
     36 var isnan = require( './../../../../base/assert/is-nan' );
     37 var floor = require( './../../../../base/special/floor' );
     38 var tan = require( './../../../../base/special/tan' );
     39 var PI = require( '@stdlib/constants/float64/pi' );
     40 var asymptoticApprox = require( './asymptotic_expansion.js' );
     41 var rationalApprox = require( './rational_approximation.js' );
     42 
     43 
     44 // VARIABLES //
     45 
     46 var MIN_SAFE_ASYMPTOTIC = 10.0; // BIG!
     47 
     48 
     49 // MAIN //
     50 
     51 /**
     52 * Evaluates the digamma function.
     53 *
     54 * ## Method
     55 *
     56 * 1.  For \\(x < 0\\), we use the reflection formula
     57 *
     58 *     ```tex
     59 *     \psi(1-x) = \psi(x) + \frac{\pi}{\tan(\pi x)}
     60 *     ```
     61 *
     62 *     to make \\(x\\) positive.
     63 *
     64 * 2.  For \\(x \in \[0,1]\\), we use the recurrence relation
     65 *
     66 *     ```tex
     67 *     \psi(x) = \psi(x+1) - \frac{1}{x}
     68 *     ```
     69 *
     70 *     to shift the evaluation range to \\(\[1,2]\\).
     71 *
     72 * 3.  For \\(x \in \[1,2]\\), we use a rational approximation of the form
     73 *
     74 *     ```tex
     75 *     \psi(x) = (x - \mathrm{root})(Y + \operatorname{R}(x-1))
     76 *     ```
     77 *
     78 *     where \\(\mathrm{root}\\) is the location of the positive root of \\(\psi\\), \\(Y\\) is a constant, and \\(R\\) is optimized for low absolute error compared to \\(Y\\).
     79 *
     80 *     <!-- <note>-->
     81 *
     82 *     Note that, since \\(\mathrm{root}\\) is irrational, we need twice as many digits in \\(\mathrm{root}\\) as in \\(x\\) in order to avoid cancellation error during subtraction, assuming \\(x\\) has an exact value. This means that, even if \\(x\\) is rounded to the next representable value, the result of \\(\psi(x)\\) will not be zero.
     83 *
     84 *     <!-- </note> -->
     85 *
     86 *     <!-- <note> -->
     87 *
     88 *     This approach gives 17-digit precision.
     89 *
     90 *     <!-- </note> -->
     91 *
     92 * 4.  For \\(x \in \[2,\mathrm{BIG}]\\), we use the recurrence relation
     93 *
     94 *     ```tex
     95 *     \psi(x+1) = \psi(x) + \frac{1}{x}
     96 *     ```
     97 *
     98 *     to shift the evaluation range to \\(\[1,2]\\).
     99 *
    100 * 5.  For \\(x > \mathrm{BIG}\\), we use the asymptotic expression
    101 *
    102 *     ```tex
    103 *     \psi(x) = \ln(x) + \frac{1}{2x} - \biggl( \frac{B_{21}}{2x^2} + \frac{B_{22}}{4x^4} + \frac{B_{23}}{6x^6} + \ldots \biggr)
    104 *     ```
    105 *
    106 *     This expansion, however, is divergent after a few terms. The number of terms depends on \\(x\\). Accordingly, we must choose a value of \\(\mathrm{BIG}\\) which allows us to truncate the series at a term that is too small to have an effect on the result. Setting \\(\mathrm{BIG} = 10\\), allows us to truncate the series early and evaluate as \\(1/x^2\\).
    107 *
    108 *     <!-- <note> -->
    109 *
    110 *     This approach gives 17-digit precision for \\(x \geq 10\\).
    111 *
    112 *     <!-- </note> -->
    113 *
    114 * ## Notes
    115 *
    116 * -   Maximum deviation found: \\(1.466\\mbox{e-}18\\)
    117 * -   Max error found: \\(2.452\mbox{e-}17\\) (double precision)
    118 *
    119 *
    120 * @param {number} x - input value
    121 * @returns {number} function value
    122 *
    123 * @example
    124 * var v = digamma( -2.5 );
    125 * // returns ~1.103
    126 *
    127 * @example
    128 * var v = digamma( 1.0 );
    129 * // returns ~-0.577
    130 *
    131 * @example
    132 * var v = digamma( 10.0 );
    133 * // returns ~2.252
    134 *
    135 * @example
    136 * var v = digamma( NaN );
    137 * // returns NaN
    138 *
    139 * @example
    140 * var v = digamma( -1.0 );
    141 * // returns NaN
    142 */
    143 function digamma( x ) {
    144 	var rem;
    145 	var tmp;
    146 	if ( isnan( x ) || x === 0.0 ) {
    147 		return NaN;
    148 	}
    149 	// If `x` is negative, use reflection...
    150 	if ( x <= -1.0 ) {
    151 		// Reflect:
    152 		x = 1.0 - x;
    153 
    154 		// Argument reduction for tan:
    155 		rem = x - floor(x);
    156 
    157 		// Shift to negative if > 0.5:
    158 		if ( rem > 0.5 ) {
    159 			rem -= 1.0;
    160 		}
    161 		// Check for evaluation at a negative pole:
    162 		if ( rem === 0.0 ) {
    163 			return NaN;
    164 		}
    165 		tmp = PI / tan( PI * rem );
    166 	} else {
    167 		tmp = 0.0;
    168 	}
    169 	// If we're above the lower-limit for the asymptotic expansion, then use it...
    170 	if ( x >= MIN_SAFE_ASYMPTOTIC ) {
    171 		tmp += asymptoticApprox( x );
    172 		return tmp;
    173 	}
    174 	// If x > 2, reduce to the interval [1,2]...
    175 	while ( x > 2.0 ) {
    176 		x -= 1.0;
    177 		tmp += 1.0/x;
    178 	}
    179 	// If x < 1, use recurrence to shift to > 1..
    180 	while ( x < 1.0 ) {
    181 		tmp -= 1.0/x;
    182 		x += 1.0;
    183 	}
    184 	tmp += rationalApprox( x );
    185 	return tmp;
    186 }
    187 
    188 
    189 // EXPORTS //
    190 
    191 module.exports = digamma;