y1.js (3909B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 * 18 * 19 * ## Notice 20 * 21 * The original C++ code and copyright notice are from the [Boost library]{@link https://github.com/boostorg/math/blob/develop/include/boost/math/special_functions/detail/bessel_y1.hpp}. The implementation has been modified for JavaScript. 22 * 23 * ```text 24 * Copyright Xiaogang Zhang, 2006. 25 * 26 * Use, modification and distribution are subject to the 27 * Boost Software License, Version 1.0. (See accompanying file 28 * LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt) 29 * ``` 30 */ 31 32 'use strict'; 33 34 // MODULES // 35 36 var ln = require( './../../../../base/special/ln' ); 37 var sqrt = require( './../../../../base/special/sqrt' ); 38 var PI = require( '@stdlib/constants/float64/pi' ); 39 var SQRT_PI = require( '@stdlib/constants/float64/sqrt-pi' ); 40 var NINF = require( '@stdlib/constants/float64/ninf' ); 41 var PINF = require( '@stdlib/constants/float64/pinf' ); 42 var sincos = require( './../../../../base/special/sincos' ); 43 var besselj1 = require( './../../../../base/special/besselj1' ); 44 var poly1 = require( './rational_p1q1.js' ); 45 var poly2 = require( './rational_p2q2.js' ); 46 var polyC = require( './rational_pcqc.js' ); 47 var polyS = require( './rational_psqs.js' ); 48 49 50 // VARIABLES // 51 52 var ONE_DIV_SQRT_PI = 1.0 / SQRT_PI; 53 var TWO_DIV_PI = 2.0 / PI; 54 55 var x1 = 2.1971413260310170351e+00; 56 var x2 = 5.4296810407941351328e+00; 57 var x11 = 5.620e+02; 58 var x12 = 1.8288260310170351490e-03; 59 var x21 = 1.3900e+03; 60 var x22 = -6.4592058648672279948e-06; 61 62 // `sincos` workspace: 63 var sc = [ 0.0, 0.0 ]; // WARNING: not thread safe 64 65 66 // MAIN // 67 68 /** 69 * Computes the Bessel function of the second kind of order one. 70 * 71 * ## Notes 72 * 73 * - Accuracy for subnormal `x` is very poor. Full accuracy is achieved at `1.0e-308` but trends progressively to zero at `5e-324`. This suggests that underflow (or overflow, perhaps due to a reciprocal) is effectively cutting off digits of precision until the computation loses all accuracy at `5e-324`. 74 * 75 * @param {number} x - input value 76 * @returns {number} evaluated Bessel function 77 * 78 * @example 79 * var v = y1( 0.0 ); 80 * // returns -Infinity 81 * 82 * v = y1( 1.0 ); 83 * // returns ~-0.781 84 * 85 * v = y1( -1.0 ); 86 * // returns NaN 87 * 88 * v = y1( Infinity ); 89 * // returns 0.0 90 * 91 * v = y1( -Infinity ); 92 * // returns NaN 93 * 94 * v = y1( NaN ); 95 * // returns NaN 96 */ 97 function y1( x ) { 98 var rc; 99 var rs; 100 var y2; 101 var r; 102 var y; 103 var z; 104 var f; 105 106 if ( x < 0.0 ) { 107 return NaN; 108 } 109 if ( x === 0.0 ) { 110 return NINF; 111 } 112 if ( x === PINF ) { 113 return 0.0; 114 } 115 if ( x <= 4.0 ) { 116 y = x * x; 117 z = ( ln( x/x1 ) * besselj1( x ) ) * TWO_DIV_PI; 118 r = poly1( y ); 119 f = ( ( x+x1 ) * ( (x - (x11/256.0)) - x12 ) ) / x; 120 return z + ( f*r ); 121 } 122 if ( x <= 8.0 ) { 123 y = x * x; 124 z = ( ln( x/x2 ) * besselj1( x ) ) * TWO_DIV_PI; 125 r = poly2( y ); 126 f = ( ( x+x2 ) * ( (x - (x21/256.0)) - x22 ) ) / x; 127 return z + ( f*r ); 128 } 129 y = 8.0 / x; 130 y2 = y * y; 131 rc = polyC( y2 ); 132 rs = polyS( y2 ); 133 f = ONE_DIV_SQRT_PI / sqrt( x ); 134 135 /* 136 * This code is really just: 137 * 138 * ``` 139 * z = x - 0.75 * PI; 140 * return f * (rc * sin(z) + y * rs * cos(z)); 141 * ``` 142 * 143 * But using the sin/cos addition rules, plus constants for sin/cos of `3π/4` which then cancel out with corresponding terms in "f". 144 */ 145 sincos( sc, x ); 146 return f * ( ( ( (y*rs) * (sc[0]-sc[1]) ) - ( rc * (sc[0]+sc[1]) ) ) ); 147 } 148 149 150 // EXPORTS // 151 152 module.exports = y1;