time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (2414B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Bernoulli
     22 
     23 > Compute the nth [Bernoulli number][bernoulli-number].
     24 
     25 <section class="intro">
     26 
     27 <!-- /.intro -->
     28 
     29 <section class="usage">
     30 
     31 ## Usage
     32 
     33 ```javascript
     34 var bernoulli = require( '@stdlib/math/base/special/bernoulli' );
     35 ```
     36 
     37 #### bernoulli( n )
     38 
     39 Computes the nth [Bernoulli number][bernoulli-number].
     40 
     41 ```javascript
     42 var v = bernoulli( 0 );
     43 // returns 1.0
     44 
     45 v = bernoulli( 1 );
     46 // returns 0.0
     47 
     48 v = bernoulli( 2 );
     49 // returns ~0.167
     50 
     51 v = bernoulli( 3 );
     52 // returns 0.0
     53 
     54 v = bernoulli( 4 );
     55 // returns ~-0.033
     56 
     57 v = bernoulli( 5 );
     58 // returns 0.0
     59 
     60 v = bernoulli( 20 );
     61 // returns ~-529.124
     62 ```
     63 
     64 For even integers `n >= 260`, the function alternates between returning positive and negative infinity, as larger [Bernoulli numbers][bernoulli-number] cannot be safely represented in [double-precision floating-point format][ieee754].
     65 
     66 ```javascript
     67 var v = bernoulli( 260 );
     68 // returns -Infinity
     69 
     70 v = bernoulli( 262 );
     71 // returns Infinity
     72 
     73 v = bernoulli( 264 );
     74 // returns -Infinity
     75 ```
     76 
     77 If not provided a nonnegative integer value, the function returns `NaN`.
     78 
     79 ```javascript
     80 var v = bernoulli( 3.14 );
     81 // returns NaN
     82 
     83 v = bernoulli( -1 );
     84 // returns NaN
     85 ```
     86 
     87 If provided `NaN`, the function returns `NaN`.
     88 
     89 ```javascript
     90 var v = bernoulli( NaN );
     91 // returns NaN
     92 ```
     93 
     94 </section>
     95 
     96 <!-- /.usage -->
     97 
     98 <section class="notes">
     99 
    100 </section>
    101 
    102 <!-- /.notes -->
    103 
    104 <section class="examples">
    105 
    106 ## Examples
    107 
    108 <!-- eslint no-undef: "error" -->
    109 
    110 ```javascript
    111 var bernoulli = require( '@stdlib/math/base/special/bernoulli' );
    112 
    113 var v;
    114 var i;
    115 
    116 for ( i = 0; i < 280; i++ ) {
    117     v = bernoulli( i );
    118     console.log( v );
    119 }
    120 ```
    121 
    122 </section>
    123 
    124 <!-- /.examples -->
    125 
    126 <section class="links">
    127 
    128 [bernoulli-number]: https://en.wikipedia.org/wiki/Bernoulli_number
    129 
    130 [ieee754]: https://en.wikipedia.org/wiki/IEEE_754-1985
    131 
    132 </section>
    133 
    134 <!-- /.links -->