time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ssumkbn.c (1886B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/blas/ext/base/ssumkbn.h"
     20 #include <stdint.h>
     21 #include <math.h>
     22 
     23 /**
     24 * Computes the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
     25 *
     26 * ## Method
     27 *
     28 * -   This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
     29 *
     30 * ## References
     31 *
     32 * -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
     33 *
     34 * @param N       number of indexed elements
     35 * @param X       input array
     36 * @param stride  stride length
     37 * @return        output value
     38 */
     39 float stdlib_strided_ssumkbn( const int64_t N, const float *X, const int64_t stride ) {
     40 	int64_t ix;
     41 	int64_t i;
     42 	float sum;
     43 	float v;
     44 	float t;
     45 	float c;
     46 
     47 	if ( N <= 0 ) {
     48 		return 0.0f;
     49 	}
     50 	if ( N == 1 || stride == 0 ) {
     51 		return X[ 0 ];
     52 	}
     53 	if ( stride < 0 ) {
     54 		ix = (1-N) * stride;
     55 	} else {
     56 		ix = 0;
     57 	}
     58 	sum = 0.0f;
     59 	c = 0.0f;
     60 	for ( i = 0; i < N; i++ ) {
     61 		v = X[ ix ];
     62 		t = sum + v;
     63 		if ( fabsf( sum ) >= fabsf( v ) ) {
     64 			c += (sum-t) + v;
     65 		} else {
     66 			c += (v-t) + sum;
     67 		}
     68 		sum = t;
     69 		ix += stride;
     70 	}
     71 	return sum + c;
     72 }