snansumpw.js (2266B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); 25 var sum = require( './ndarray.js' ); 26 27 28 // MAIN // 29 30 /** 31 * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation. 32 * 33 * ## Method 34 * 35 * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`. 36 * 37 * ## References 38 * 39 * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050). 40 * 41 * @param {PositiveInteger} N - number of indexed elements 42 * @param {Float32Array} x - input array 43 * @param {integer} stride - stride length 44 * @returns {number} sum 45 * 46 * @example 47 * var Float32Array = require( '@stdlib/array/float32' ); 48 * 49 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 50 * var N = x.length; 51 * 52 * var v = snansumpw( N, x, 1 ); 53 * // returns 1.0 54 */ 55 function snansumpw( N, x, stride ) { 56 var ix; 57 var s; 58 var i; 59 60 if ( N <= 0 ) { 61 return 0.0; 62 } 63 if ( N === 1 || stride === 0 ) { 64 if ( isnanf( x[ 0 ] ) ) { 65 return 0.0; 66 } 67 return x[ 0 ]; 68 } 69 if ( stride < 0 ) { 70 ix = (1-N) * stride; 71 } else { 72 ix = 0; 73 } 74 if ( N < 8 ) { 75 // Use simple summation... 76 s = 0.0; 77 for ( i = 0; i < N; i++ ) { 78 if ( isnanf( x[ ix ] ) === false ) { 79 s = float64ToFloat32( s + x[ ix ] ); 80 } 81 ix += stride; 82 } 83 return s; 84 } 85 return sum( N, x, stride, ix ); 86 } 87 88 89 // EXPORTS // 90 91 module.exports = snansumpw;