snansumkbn.js (2565B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); 25 var abs = require( '@stdlib/math/base/special/abs' ); 26 27 28 // MAIN // 29 30 /** 31 * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 32 * 33 * ## Method 34 * 35 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 36 * 37 * ## References 38 * 39 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 40 * 41 * @param {PositiveInteger} N - number of indexed elements 42 * @param {Float32Array} x - input array 43 * @param {integer} stride - stride length 44 * @returns {number} sum 45 * 46 * @example 47 * var Float32Array = require( '@stdlib/array/float32' ); 48 * 49 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 50 * var N = x.length; 51 * 52 * var v = snansumkbn( N, x, 1 ); 53 * // returns 1.0 54 */ 55 function snansumkbn( N, x, stride ) { 56 var sum; 57 var ix; 58 var v; 59 var t; 60 var c; 61 var i; 62 63 if ( N <= 0 ) { 64 return 0.0; 65 } 66 if ( N === 1 || stride === 0 ) { 67 if ( isnanf( x[ 0 ] ) ) { 68 return 0.0; 69 } 70 return x[ 0 ]; 71 } 72 if ( stride < 0 ) { 73 ix = (1-N) * stride; 74 } else { 75 ix = 0; 76 } 77 sum = 0.0; 78 c = 0.0; 79 for ( i = 0; i < N; i++ ) { 80 v = x[ ix ]; 81 if ( isnanf( v ) === false ) { 82 t = sum + v; 83 if ( abs( sum ) >= abs( v ) ) { 84 c = float64ToFloat32( c + float64ToFloat32( float64ToFloat32( sum-t ) + v ) ); // eslint-disable-line max-len 85 } else { 86 c = float64ToFloat32( c + float64ToFloat32( float64ToFloat32( v-t ) + sum ) ); // eslint-disable-line max-len 87 } 88 sum = t; 89 } 90 ix += stride; 91 } 92 return float64ToFloat32( sum + c ); 93 } 94 95 96 // EXPORTS // 97 98 module.exports = snansumkbn;