time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (4471B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
     24 var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
     25 var floor = require( '@stdlib/math/base/special/floor' );
     26 
     27 
     28 // VARIABLES //
     29 
     30 // Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):
     31 var BLOCKSIZE = 128;
     32 
     33 
     34 // MAIN //
     35 
     36 /**
     37 * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation with extended accumulation.
     38 *
     39 * ## Method
     40 *
     41 * -   This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
     42 *
     43 * ## References
     44 *
     45 * -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
     46 *
     47 * @param {PositiveInteger} N - number of indexed elements
     48 * @param {Float32Array} x - input array
     49 * @param {integer} stride - stride length
     50 * @param {NonNegativeInteger} offset - starting index
     51 * @returns {number} sum
     52 *
     53 * @example
     54 * var Float32Array = require( '@stdlib/array/float32' );
     55 * var floor = require( '@stdlib/math/base/special/floor' );
     56 *
     57 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
     58 * var N = floor( x.length / 2 );
     59 *
     60 * var v = sdsnansumpw( N, x, 2, 1 );
     61 * // returns 5.0
     62 */
     63 function sdsnansumpw( N, x, stride, offset ) {
     64 	var ix;
     65 	var s0;
     66 	var s1;
     67 	var s2;
     68 	var s3;
     69 	var s4;
     70 	var s5;
     71 	var s6;
     72 	var s7;
     73 	var M;
     74 	var s;
     75 	var n;
     76 	var i;
     77 
     78 	if ( N <= 0 ) {
     79 		return 0.0;
     80 	}
     81 	if ( N === 1 || stride === 0 ) {
     82 		if ( isnanf( x[ offset ] ) ) {
     83 			return 0.0;
     84 		}
     85 		return x[ offset ];
     86 	}
     87 	ix = offset;
     88 	if ( N < 8 ) {
     89 		// Use simple summation...
     90 		s = 0.0;
     91 		for ( i = 0; i < N; i++ ) {
     92 			if ( isnanf( x[ ix ] ) === false ) {
     93 				s += x[ ix ];
     94 			}
     95 			ix += stride;
     96 		}
     97 		return float64ToFloat32( s );
     98 	}
     99 	if ( N <= BLOCKSIZE ) {
    100 		// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
    101 		s0 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    102 		ix += stride;
    103 		s1 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    104 		ix += stride;
    105 		s2 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    106 		ix += stride;
    107 		s3 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    108 		ix += stride;
    109 		s4 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    110 		ix += stride;
    111 		s5 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    112 		ix += stride;
    113 		s6 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    114 		ix += stride;
    115 		s7 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    116 		ix += stride;
    117 
    118 		M = N % 8;
    119 		for ( i = 8; i < N-M; i += 8 ) {
    120 			s0 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    121 			ix += stride;
    122 			s1 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    123 			ix += stride;
    124 			s2 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    125 			ix += stride;
    126 			s3 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    127 			ix += stride;
    128 			s4 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    129 			ix += stride;
    130 			s5 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    131 			ix += stride;
    132 			s6 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    133 			ix += stride;
    134 			s7 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
    135 			ix += stride;
    136 		}
    137 		// Pairwise sum the accumulators:
    138 		s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
    139 
    140 		// Clean-up loop...
    141 		for ( i; i < N; i++ ) {
    142 			if ( isnanf( x[ ix ] ) === false ) {
    143 				s += x[ ix ];
    144 			}
    145 			ix += stride;
    146 		}
    147 		return float64ToFloat32( s );
    148 	}
    149 	// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
    150 	n = floor( N/2 );
    151 	n -= n % 8;
    152 	return float64ToFloat32( sdsnansumpw( n, x, stride, ix ) + sdsnansumpw( N-n, x, stride, ix+(n*stride) ) ); // eslint-disable-line max-len
    153 }
    154 
    155 
    156 // EXPORTS //
    157 
    158 module.exports = sdsnansumpw;