ndarray.js (2350B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var abs = require( '@stdlib/math/base/special/abs' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 34 * 35 * ## References 36 * 37 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {NumericArray} x - input array 41 * @param {integer} stride - stride length 42 * @param {NonNegativeInteger} offset - starting index 43 * @returns {number} sum 44 * 45 * @example 46 * var floor = require( '@stdlib/math/base/special/floor' ); 47 * 48 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 49 * var N = floor( x.length / 2 ); 50 * 51 * var v = gsumkbn2( N, x, 2, 1 ); 52 * // returns 5.0 53 */ 54 function gsumkbn2( N, x, stride, offset ) { 55 var sum; 56 var ccs; 57 var ix; 58 var cs; 59 var cc; 60 var v; 61 var t; 62 var c; 63 var i; 64 65 if ( N <= 0 ) { 66 return 0.0; 67 } 68 if ( N === 1 || stride === 0 ) { 69 return x[ offset ]; 70 } 71 ix = offset; 72 sum = 0.0; 73 ccs = 0.0; // second order correction term for lost low order bits 74 cs = 0.0; // first order correction term for lost low order bits 75 for ( i = 0; i < N; i++ ) { 76 v = x[ ix ]; 77 t = sum + v; 78 if ( abs( sum ) >= abs( v ) ) { 79 c = (sum-t) + v; 80 } else { 81 c = (v-t) + sum; 82 } 83 sum = t; 84 t = cs + c; 85 if ( abs( cs ) >= abs( c ) ) { 86 cc = (cs-t) + c; 87 } else { 88 cc = (c-t) + cs; 89 } 90 cs = t; 91 ccs += cc; 92 ix += stride; 93 } 94 return sum + cs + ccs; 95 } 96 97 98 // EXPORTS // 99 100 module.exports = gsumkbn2;