ndarray.js (2100B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var abs = require( '@stdlib/math/base/special/abs' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the sum of strided array elements using an improved Kahan–Babuška algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 34 * 35 * ## References 36 * 37 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {NumericArray} x - input array 41 * @param {integer} stride - stride length 42 * @param {NonNegativeInteger} offset - starting index 43 * @returns {number} sum 44 * 45 * @example 46 * var floor = require( '@stdlib/math/base/special/floor' ); 47 * 48 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 49 * var N = floor( x.length / 2 ); 50 * 51 * var v = gsumkbn( N, x, 2, 1 ); 52 * // returns 5.0 53 */ 54 function gsumkbn( N, x, stride, offset ) { 55 var sum; 56 var ix; 57 var v; 58 var t; 59 var c; 60 var i; 61 62 if ( N <= 0 ) { 63 return 0.0; 64 } 65 if ( N === 1 || stride === 0 ) { 66 return x[ offset ]; 67 } 68 ix = offset; 69 sum = 0.0; 70 c = 0.0; 71 for ( i = 0; i < N; i++ ) { 72 v = x[ ix ]; 73 t = sum + v; 74 if ( abs( sum ) >= abs( v ) ) { 75 c += (sum-t) + v; 76 } else { 77 c += (v-t) + sum; 78 } 79 sum = t; 80 ix += stride; 81 } 82 return sum + c; 83 } 84 85 86 // EXPORTS // 87 88 module.exports = gsumkbn;