time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5877B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # gsorthp
     22 
     23 > Sort a strided array using heapsort.
     24 
     25 <section class="usage">
     26 
     27 ## Usage
     28 
     29 ```javascript
     30 var gsorthp = require( '@stdlib/blas/ext/base/gsorthp' );
     31 ```
     32 
     33 #### gsorthp( N, order, x, stride )
     34 
     35 Sorts a strided array `x` using heapsort.
     36 
     37 ```javascript
     38 var x = [ 1.0, -2.0, 3.0, -4.0 ];
     39 
     40 gsorthp( x.length, 1.0, x, 1 );
     41 // x => [ -4.0, -2.0, 1.0, 3.0 ]
     42 ```
     43 
     44 The function has the following parameters:
     45 
     46 -   **N**: number of indexed elements.
     47 -   **order**: sort order. If `order < 0.0`, the input strided array is sorted in **decreasing** order. If `order > 0.0`, the input strided array is sorted in **increasing** order. If `order == 0.0`, the input strided array is left unchanged.
     48 -   **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
     49 -   **stride**: index increment.
     50 
     51 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to sort every other element
     52 
     53 ```javascript
     54 var floor = require( '@stdlib/math/base/special/floor' );
     55 
     56 var x = [ 1.0, -2.0, 3.0, -4.0 ];
     57 var N = floor( x.length / 2 );
     58 
     59 gsorthp( N, -1.0, x, 2 );
     60 // x => [ 3.0, -2.0, 1.0, -4.0 ]
     61 ```
     62 
     63 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     64 
     65 ```javascript
     66 var Float64Array = require( '@stdlib/array/float64' );
     67 var floor = require( '@stdlib/math/base/special/floor' );
     68 
     69 // Initial array...
     70 var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
     71 
     72 // Create an offset view...
     73 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     74 var N = floor( x0.length/2 );
     75 
     76 // Sort every other element...
     77 gsorthp( N, -1.0, x1, 2 );
     78 // x0 => <Float64Array>[ 1.0, 4.0, 3.0, 2.0 ]
     79 ```
     80 
     81 #### gsorthp.ndarray( N, order, x, stride, offset )
     82 
     83 Sorts a strided array `x` using heapsort and alternative indexing semantics.
     84 
     85 ```javascript
     86 var x = [ 1.0, -2.0, 3.0, -4.0 ];
     87 
     88 gsorthp.ndarray( x.length, 1.0, x, 1, 0 );
     89 // x => [ -4.0, -2.0, 1.0, 3.0 ]
     90 ```
     91 
     92 The function has the following additional parameters:
     93 
     94 -   **offset**: starting index.
     95 
     96 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to access only the last three elements of `x`
     97 
     98 ```javascript
     99 var x = [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ];
    100 
    101 gsorthp.ndarray( 3, 1.0, x, 1, x.length-3 );
    102 // x => [ 1.0, -2.0, 3.0, -6.0, -4.0, 5.0 ]
    103 ```
    104 
    105 </section>
    106 
    107 <!-- /.usage -->
    108 
    109 <section class="notes">
    110 
    111 ## Notes
    112 
    113 -   If `N <= 0` or `order == 0.0`, both functions return `x` unchanged.
    114 -   The algorithm distinguishes between `-0` and `+0`. When sorted in increasing order, `-0` is sorted before `+0`. When sorted in decreasing order, `-0` is sorted after `+0`.
    115 -   The algorithm sorts `NaN` values to the end. When sorted in increasing order, `NaN` values are sorted last. When sorted in decreasing order, `NaN` values are sorted first.
    116 -   The algorithm has space complexity `O(1)` and time complexity `O(N log2 N)`.
    117 -   The algorithm is **unstable**, meaning that the algorithm may change the order of strided array elements which are equal or equivalent (e.g., `NaN` values).
    118 -   The input strided array is sorted **in-place** (i.e., the input strided array is **mutated**).
    119 -   Depending on the environment, the typed versions ([`dsorthp`][@stdlib/blas/ext/base/dsorthp], [`ssorthp`][@stdlib/blas/ext/base/ssorthp], etc.) are likely to be significantly more performant.
    120 
    121 </section>
    122 
    123 <!-- /.notes -->
    124 
    125 <section class="examples">
    126 
    127 ## Examples
    128 
    129 <!-- eslint no-undef: "error" -->
    130 
    131 ```javascript
    132 var round = require( '@stdlib/math/base/special/round' );
    133 var randu = require( '@stdlib/random/base/randu' );
    134 var Float64Array = require( '@stdlib/array/float64' );
    135 var gsorthp = require( '@stdlib/blas/ext/base/gsorthp' );
    136 
    137 var rand;
    138 var sign;
    139 var x;
    140 var i;
    141 
    142 x = new Float64Array( 10 );
    143 for ( i = 0; i < x.length; i++ ) {
    144     rand = round( randu()*100.0 );
    145     sign = randu();
    146     if ( sign < 0.5 ) {
    147         sign = -1.0;
    148     } else {
    149         sign = 1.0;
    150     }
    151     x[ i ] = sign * rand;
    152 }
    153 console.log( x );
    154 
    155 gsorthp( x.length, -1.0, x, -1 );
    156 console.log( x );
    157 ```
    158 
    159 </section>
    160 
    161 <!-- /.examples -->
    162 
    163 * * *
    164 
    165 <section class="references">
    166 
    167 ## References
    168 
    169 -   Williams, John William Joseph. 1964. "Algorithm 232: Heapsort." _Communications of the ACM_ 7 (6). New York, NY, USA: Association for Computing Machinery: 347–49. doi:[10.1145/512274.512284][@williams:1964a].
    170 -   Floyd, Robert W. 1964. "Algorithm 245: Treesort." _Communications of the ACM_ 7 (12). New York, NY, USA: Association for Computing Machinery: 701. doi:[10.1145/355588.365103][@floyd:1964a].
    171 
    172 </section>
    173 
    174 <!-- /.references -->
    175 
    176 <section class="links">
    177 
    178 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
    179 
    180 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    181 
    182 [@stdlib/blas/ext/base/dsorthp]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/dsorthp
    183 
    184 [@stdlib/blas/ext/base/ssorthp]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/ssorthp
    185 
    186 [@williams:1964a]: https://doi.org/10.1145/512274.512284
    187 
    188 [@floyd:1964a]: https://doi.org/10.1145/355588.365103
    189 
    190 </section>
    191 
    192 <!-- /.links -->