ndarray.js (4158B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var floor = require( '@stdlib/math/base/special/floor' ); 25 26 27 // VARIABLES // 28 29 // Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.): 30 var BLOCKSIZE = 128; 31 32 33 // MAIN // 34 35 /** 36 * Computes the sum of strided array elements, ignoring `NaN` values and using pairwise summation. 37 * 38 * ## Method 39 * 40 * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`. 41 * 42 * ## References 43 * 44 * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050). 45 * 46 * @param {PositiveInteger} N - number of indexed elements 47 * @param {NumericArray} x - input array 48 * @param {integer} stride - stride length 49 * @param {NonNegativeInteger} offset - starting index 50 * @returns {number} sum 51 * 52 * @example 53 * var floor = require( '@stdlib/math/base/special/floor' ); 54 * 55 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 56 * var N = floor( x.length / 2 ); 57 * 58 * var v = gnansumpw( N, x, 2, 1 ); 59 * // returns 5.0 60 */ 61 function gnansumpw( N, x, stride, offset ) { 62 var ix; 63 var s0; 64 var s1; 65 var s2; 66 var s3; 67 var s4; 68 var s5; 69 var s6; 70 var s7; 71 var M; 72 var s; 73 var n; 74 var i; 75 76 if ( N <= 0 ) { 77 return 0.0; 78 } 79 if ( N === 1 || stride === 0 ) { 80 if ( isnan( x[ offset ] ) ) { 81 return 0.0; 82 } 83 return x[ offset ]; 84 } 85 ix = offset; 86 if ( N < 8 ) { 87 // Use simple summation... 88 s = 0.0; 89 for ( i = 0; i < N; i++ ) { 90 if ( isnan( x[ ix ] ) === false ) { 91 s += x[ ix ]; 92 } 93 ix += stride; 94 } 95 return s; 96 } 97 if ( N <= BLOCKSIZE ) { 98 // Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)... 99 s0 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 100 ix += stride; 101 s1 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 102 ix += stride; 103 s2 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 104 ix += stride; 105 s3 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 106 ix += stride; 107 s4 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 108 ix += stride; 109 s5 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 110 ix += stride; 111 s6 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 112 ix += stride; 113 s7 = ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 114 ix += stride; 115 116 M = N % 8; 117 for ( i = 8; i < N-M; i += 8 ) { 118 s0 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 119 ix += stride; 120 s1 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 121 ix += stride; 122 s2 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 123 ix += stride; 124 s3 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 125 ix += stride; 126 s4 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 127 ix += stride; 128 s5 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 129 ix += stride; 130 s6 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 131 ix += stride; 132 s7 += ( isnan( x[ ix ] ) ) ? 0.0 : x[ ix ]; 133 ix += stride; 134 } 135 // Pairwise sum the accumulators: 136 s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7)); 137 138 // Clean-up loop... 139 for ( i; i < N; i++ ) { 140 if ( isnan( x[ ix ] ) === false ) { 141 s += x[ ix ]; 142 } 143 ix += stride; 144 } 145 return s; 146 } 147 // Recurse by dividing by two, but avoiding non-multiples of unroll factor... 148 n = floor( N/2 ); 149 n -= n % 8; 150 return gnansumpw( n, x, stride, ix ) + gnansumpw( N-n, x, stride, ix+(n*stride) ); // eslint-disable-line max-len 151 } 152 153 154 // EXPORTS // 155 156 module.exports = gnansumpw;