time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5468B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # gnansumpw
     22 
     23 > Calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.
     24 
     25 <section class="intro">
     26 
     27 </section>
     28 
     29 <!-- /.intro -->
     30 
     31 <section class="usage">
     32 
     33 ## Usage
     34 
     35 ```javascript
     36 var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );
     37 ```
     38 
     39 #### gnansumpw( N, x, stride )
     40 
     41 Computes the sum of strided array elements, ignoring `NaN` values and using pairwise summation.
     42 
     43 ```javascript
     44 var x = [ 1.0, -2.0, NaN, 2.0 ];
     45 var N = x.length;
     46 
     47 var v = gnansumpw( N, x, 1 );
     48 // returns 1.0
     49 ```
     50 
     51 The function has the following parameters:
     52 
     53 -   **N**: number of indexed elements.
     54 -   **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
     55 -   **stride**: index increment for `x`.
     56 
     57 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the sum of every other element in `x`,
     58 
     59 ```javascript
     60 var floor = require( '@stdlib/math/base/special/floor' );
     61 
     62 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
     63 var N = floor( x.length / 2 );
     64 
     65 var v = gnansumpw( N, x, 2 );
     66 // returns 5.0
     67 ```
     68 
     69 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     70 
     71 <!-- eslint-disable stdlib/capitalized-comments -->
     72 
     73 ```javascript
     74 var Float64Array = require( '@stdlib/array/float64' );
     75 var floor = require( '@stdlib/math/base/special/floor' );
     76 
     77 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     78 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     79 
     80 var N = floor( x0.length / 2 );
     81 
     82 var v = gnansumpw( N, x1, 2 );
     83 // returns 5.0
     84 ```
     85 
     86 #### gnansumpw.ndarray( N, x, stride, offset )
     87 
     88 Computes the sum of strided array elements, ignoring `NaN` values and using pairwise summation and alternative indexing semantics.
     89 
     90 ```javascript
     91 var x = [ 1.0, -2.0, NaN, 2.0 ];
     92 var N = x.length;
     93 
     94 var v = gnansumpw.ndarray( N, x, 1, 0 );
     95 // returns 1.0
     96 ```
     97 
     98 The function has the following additional parameters:
     99 
    100 -   **offset**: starting index for `x`.
    101 
    102 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
    103 
    104 ```javascript
    105 var floor = require( '@stdlib/math/base/special/floor' );
    106 
    107 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
    108 var N = floor( x.length / 2 );
    109 
    110 var v = gnansumpw.ndarray( N, x, 2, 1 );
    111 // returns 5.0
    112 ```
    113 
    114 </section>
    115 
    116 <!-- /.usage -->
    117 
    118 <section class="notes">
    119 
    120 ## Notes
    121 
    122 -   If `N <= 0`, both functions return `0.0`.
    123 -   In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
    124 -   Depending on the environment, the typed versions ([`dnansumpw`][@stdlib/blas/ext/base/dnansumpw], [`snansumpw`][@stdlib/blas/ext/base/snansumpw], etc.) are likely to be significantly more performant.
    125 
    126 </section>
    127 
    128 <!-- /.notes -->
    129 
    130 <section class="examples">
    131 
    132 ## Examples
    133 
    134 <!-- eslint no-undef: "error" -->
    135 
    136 ```javascript
    137 var randu = require( '@stdlib/random/base/randu' );
    138 var round = require( '@stdlib/math/base/special/round' );
    139 var Float64Array = require( '@stdlib/array/float64' );
    140 var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );
    141 
    142 var x;
    143 var i;
    144 
    145 x = new Float64Array( 10 );
    146 for ( i = 0; i < x.length; i++ ) {
    147     if ( randu() < 0.2 ) {
    148         x[ i ] = NaN;
    149     } else {
    150         x[ i ] = round( randu()*100.0 );
    151     }
    152 }
    153 console.log( x );
    154 
    155 var v = gnansumpw( x.length, x, 1 );
    156 console.log( v );
    157 ```
    158 
    159 </section>
    160 
    161 <!-- /.examples -->
    162 
    163 * * *
    164 
    165 <section class="references">
    166 
    167 ## References
    168 
    169 -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050][@higham:1993a].
    170 
    171 </section>
    172 
    173 <!-- /.references -->
    174 
    175 <section class="links">
    176 
    177 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
    178 
    179 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    180 
    181 [@stdlib/blas/ext/base/dnansumpw]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/dnansumpw
    182 
    183 [@stdlib/blas/ext/base/snansumpw]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/snansumpw
    184 
    185 [@higham:1993a]: https://doi.org/10.1137/0914050
    186 
    187 </section>
    188 
    189 <!-- /.links -->