ndarray.js (2546B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 35 * 36 * ## References 37 * 38 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {NumericArray} x - input array 42 * @param {integer} stride - stride length 43 * @param {NonNegativeInteger} offset - starting index 44 * @returns {number} sum 45 * 46 * @example 47 * var floor = require( '@stdlib/math/base/special/floor' ); 48 * 49 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 50 * var N = floor( x.length / 2 ); 51 * 52 * var v = gnansumkbn2( N, x, 2, 1 ); 53 * // returns 5.0 54 */ 55 function gnansumkbn2( N, x, stride, offset ) { 56 var sum; 57 var ccs; 58 var ix; 59 var cs; 60 var cc; 61 var v; 62 var t; 63 var c; 64 var i; 65 66 if ( N <= 0 ) { 67 return 0.0; 68 } 69 if ( N === 1 || stride === 0 ) { 70 if ( isnan( x[ offset ] ) ) { 71 return 0.0; 72 } 73 return x[ offset ]; 74 } 75 ix = offset; 76 sum = 0.0; 77 ccs = 0.0; // second order correction term for lost low order bits 78 cs = 0.0; // first order correction term for lost low order bits 79 for ( i = 0; i < N; i++ ) { 80 v = x[ ix ]; 81 if ( isnan( v ) === false ) { 82 t = sum + v; 83 if ( abs( sum ) >= abs( v ) ) { 84 c = (sum-t) + v; 85 } else { 86 c = (v-t) + sum; 87 } 88 sum = t; 89 t = cs + c; 90 if ( abs( cs ) >= abs( c ) ) { 91 cc = (cs-t) + c; 92 } else { 93 cc = (c-t) + cs; 94 } 95 cs = t; 96 ccs += cc; 97 } 98 ix += stride; 99 } 100 return sum + cs + ccs; 101 } 102 103 104 // EXPORTS // 105 106 module.exports = gnansumkbn2;