time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

gnansumkbn.js (2170B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var abs = require( '@stdlib/math/base/special/abs' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Computes the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.
     31 *
     32 * ## Method
     33 *
     34 * -   This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
     35 *
     36 * ## References
     37 *
     38 * -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
     39 *
     40 * @param {PositiveInteger} N - number of indexed elements
     41 * @param {NumericArray} x - input array
     42 * @param {integer} stride - stride length
     43 * @returns {number} sum
     44 *
     45 * @example
     46 * var x = [ 1.0, -2.0, NaN, 2.0 ];
     47 * var N = x.length;
     48 *
     49 * var v = gnansumkbn( N, x, 1 );
     50 * // returns 1.0
     51 */
     52 function gnansumkbn( N, x, stride ) {
     53 	var sum;
     54 	var ix;
     55 	var v;
     56 	var t;
     57 	var c;
     58 	var i;
     59 
     60 	if ( N <= 0 ) {
     61 		return 0.0;
     62 	}
     63 	if ( N === 1 || stride === 0 ) {
     64 		if ( isnan( x[ 0 ] ) ) {
     65 			return 0.0;
     66 		}
     67 		return x[ 0 ];
     68 	}
     69 	if ( stride < 0 ) {
     70 		ix = (1-N) * stride;
     71 	} else {
     72 		ix = 0;
     73 	}
     74 	sum = 0.0;
     75 	c = 0.0;
     76 	for ( i = 0; i < N; i++ ) {
     77 		v = x[ ix ];
     78 		if ( isnan( v ) === false ) {
     79 			t = sum + v;
     80 			if ( abs( sum ) >= abs( v ) ) {
     81 				c += (sum-t) + v;
     82 			} else {
     83 				c += (v-t) + sum;
     84 			}
     85 			sum = t;
     86 		}
     87 		ix += stride;
     88 	}
     89 	return sum + c;
     90 }
     91 
     92 
     93 // EXPORTS //
     94 
     95 module.exports = gnansumkbn;