ndarray.js (2789B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 35 * 36 * ## References 37 * 38 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {NumericArray} x - input array 42 * @param {integer} strideX - `x` stride length 43 * @param {NonNegativeInteger} offsetX - `x` starting index 44 * @param {NumericArray} out - output array 45 * @param {integer} strideOut - `out` stride length 46 * @param {NonNegativeInteger} offsetOut - `out` starting index 47 * @returns {NumericArray} output array 48 * 49 * @example 50 * var floor = require( '@stdlib/math/base/special/floor' ); 51 * 52 * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ]; 53 * var out = [ 0.0, 0 ]; 54 * 55 * var N = floor( x.length / 2 ); 56 * 57 * var v = gnannsumkbn( N, x, 2, 1, out, 1, 0 ); 58 * // returns [ 5.0, 4 ] 59 */ 60 function gnannsumkbn( N, x, strideX, offsetX, out, strideOut, offsetOut ) { 61 var sum; 62 var ix; 63 var io; 64 var v; 65 var t; 66 var c; 67 var n; 68 var i; 69 70 ix = offsetX; 71 io = offsetOut; 72 73 sum = 0.0; 74 if ( N <= 0 ) { 75 out[ io ] = sum; 76 out[ io+strideOut ] = 0; 77 return out; 78 } 79 if ( N === 1 || strideX === 0 ) { 80 if ( isnan( x[ ix ] ) ) { 81 out[ io ] = sum; 82 out[ io+strideOut ] = 0; 83 return out; 84 } 85 out[ io ] = x[ ix ]; 86 out[ io+strideOut ] = 1; 87 return out; 88 } 89 c = 0.0; 90 n = 0; 91 for ( i = 0; i < N; i++ ) { 92 v = x[ ix ]; 93 if ( isnan( v ) === false ) { 94 t = sum + v; 95 if ( abs( sum ) >= abs( v ) ) { 96 c += (sum-t) + v; 97 } else { 98 c += (v-t) + sum; 99 } 100 sum = t; 101 n += 1; 102 } 103 ix += strideX; 104 } 105 out[ io ] = sum + c; 106 out[ io+strideOut ] = n; 107 return out; 108 } 109 110 111 // EXPORTS // 112 113 module.exports = gnannsumkbn;