gapxsumkbn2.js (2329B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var abs = require( '@stdlib/math/base/special/abs' ); 24 25 26 // MAIN // 27 28 /** 29 * Adds a constant to each strided array element and computes the sum using a second-order iterative Kahan–Babuška algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 34 * 35 * ## References 36 * 37 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {number} alpha - constant 41 * @param {NumericArray} x - input array 42 * @param {integer} stride - stride length 43 * @returns {number} sum 44 * 45 * @example 46 * var x = [ 1.0, -2.0, 2.0 ]; 47 * var N = x.length; 48 * 49 * var v = gapxsumkbn2( N, 5.0, x, 1 ); 50 * // returns 16.0 51 */ 52 function gapxsumkbn2( N, alpha, x, stride ) { 53 var sum; 54 var ccs; 55 var ix; 56 var cs; 57 var cc; 58 var v; 59 var t; 60 var c; 61 var i; 62 63 if ( N <= 0 ) { 64 return 0.0; 65 } 66 if ( N === 1 || stride === 0 ) { 67 return alpha + x[ 0 ]; 68 } 69 if ( stride < 0 ) { 70 ix = (1-N) * stride; 71 } else { 72 ix = 0; 73 } 74 sum = 0.0; 75 ccs = 0.0; // second order correction term for lost low order bits 76 cs = 0.0; // first order correction term for lost low order bits 77 for ( i = 0; i < N; i++ ) { 78 v = alpha + x[ ix ]; 79 t = sum + v; 80 if ( abs( sum ) >= abs( v ) ) { 81 c = (sum-t) + v; 82 } else { 83 c = (v-t) + sum; 84 } 85 sum = t; 86 t = cs + c; 87 if ( abs( cs ) >= abs( c ) ) { 88 cc = (cs-t) + c; 89 } else { 90 cc = (c-t) + cs; 91 } 92 cs = t; 93 ccs += cc; 94 ix += stride; 95 } 96 return sum + cs + ccs; 97 } 98 99 100 // EXPORTS // 101 102 module.exports = gapxsumkbn2;